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Mǐsta, Jaroslav Wagner, and other members of Department of Optics for support.

I am also grateful to Martin Hendrych for his guidance during my stay at ICFO.

Finally, my warmest thanks go to my family.

Thank you.



vi



Contents

1 Goals of the Thesis 1

2 Contemporary state of research 5

3 Methods and tools 9

3.1 From classical to quantum . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Fock states representation . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Hong-Ou-Mandel interference . . . . . . . . . . . . . . . . . . . . . 11

3.4 Beam transformation by the diffraction grating . . . . . . . . . . . 12

3.5 Spontaneous parametric down-conversion . . . . . . . . . . . . . . . 13

3.6 Energy and momentum conversion laws for SPDC . . . . . . . . . . 14

4 Tunable control of the frequency correlations of entangled photons 17

4.1 Pulse front tilt technique and SPDC . . . . . . . . . . . . . . . . . 17

4.2 Indirect measurement of the frequency correlations . . . . . . . . . 21

4.3 Direct measurement of the frequency correlations . . . . . . . . . . 25

4.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Experimental realization of programmable quantum gate 31

5.1 Quantum gates operation . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Quantum gate implementation . . . . . . . . . . . . . . . . . . . . . 32

5.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Spatial mode functions overlap on the PBS . . . . . . . . . . . . . . 35

5.5 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.6 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.7 Other application of the realized quantum gate . . . . . . . . . . . . 40

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



viii CONTENTS

6 Optimal two-copy discrimination of quantum measurements 43

6.1 Discrimination strategies . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Probing with separable states . . . . . . . . . . . . . . . . . . . . . 47

6.3 Probing with entangled states . . . . . . . . . . . . . . . . . . . . . 49

6.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Conclusions and outlook 59
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Chapter 1

Goals of the Thesis

The aim of the thesis is to present my work in the field of generation of correlated

photon pairs via spontaneous parametric down-conversion and their applications in

quantum information processing experiments.

The first part of the thesis, chapter 2, briefly describes historical and contem-

porary state of research in the field of photon pairs generation and quantum in-

formation processing. The tools and methods important for the rest of this work

are described in chapter 3. We review quantization of electromagnetic field, Fock

state representation, two photon Hong-Ou-Mandel interference, beam transforma-

tion by a diffraction grating, spontaneous parametric down-conversion, and energy

and momentum conservation laws and their implications.

The various types of frequency correlations of entangled photon pairs gener-

ated via spontaneous parametric down-conversion are studied in chapter 4. With

the pulse-front tilt technique we demonstrate experimentally full control of the

frequency correlations of entangled photon pairs. The method used to generate

different frequency correlations is based on a proper tailoring of the group veloc-

ities of all interacting waves in the nonlinear medium through the use of beams

with angular dispersion. The medium with angular dispersion, such as a diffrac-

tion grating, causes tilting of the pulse front. Chapter 4 contains two different

experiments: direct and indirect measurements of frequency correlations, showing

possibilities of the mentioned technique. We demonstrate generation of frequency

anti-correlated photon pairs entangled in polarization for the case of femtosecond

pump beam without any need for narrow filters in front of the detectors. We also

show generation of highly frequency correlated photon pairs, which can be used, for

example, in some protocols for the quantum enhanced clock synchronization. The

last special case is the generation of the frequency uncorrelated photon pairs. It is

1



2 CHAPTER 1. Goals of the Thesis

worth mentioning that the generated frequency correlations mentioned above are

only particular cases of all the correlations and bandwidths that can be achieved

with this technique. The technique, we employ, works independently of the wave-

length and the nonlinear crystal, and therefore it can be implemented in materials

and at wavelengths where conventional solutions are not available.

In chapter 5, we experimentally demonstrate a programmable single-qubit quan-

tum gate. This quantum processor applies a unitary phase shift operation to the

data qubit with the value of the phase shift being fully determined by the state of

the program qubit. Our linear optical implementation is based on encoding of qubits

into polarization states of single photons, two-photon interference on a polarizing

beam splitter, and measurement on the output program qubit. We characterize the

programmable gate by full quantum process tomography. We show that by using

a different set of program states the device can also operate as a programmable

partial polarization filter.

In chapter 6 we investigate the optimal discrimination between two projective

quantum measurements on a single qubit. We consider a scenario where the mea-

surement that should be identified can be performed twice and we show that adap-

tive discrimination strategy, entangled probe states, and feed-forward all help to

increase the probability of correct identification of the measurement. We also ex-

perimentally demonstrate the studied discrimination strategies and test their per-

formance. The employed experimental setup involves projective measurements on

polarization states of single photons and preparation of required probe two-photon

polarization states by the process of spontaneous parametric down-conversion and

passive linear optics.

The main results of the thesis are reviewed in chapter 7, where we also give brief

outlook of future work. The list of my publications, citation index and bibliography

are given at the end of the thesis. The thesis and all supporting materials are

included in the electronic form on the attached CD.
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Chapter 2

Contemporary state of research

The discovery of the laser in 1960 enabled rapid development in the field of nonlinear

optics. This discipline involves every phenomena where light interacts with light

via a nonlinear medium. Every medium can behave in a nonlinear way if sufficient

intensity of light is applied. The results of this nonlinear behavior are, for example,

dependance of refraction index on optical intensity,1 controlling light via light,2 or

optical frequency conversion.3

Very interesting applications of nonlinear optics are sources generating light with

nonclassical properties such as entanglement. Correlations of entangled particles are

much stronger than the classical ones and can be verified by Bell test measurement.4

The most widely used method for the generation of pairs of entangled photons is

spontaneous parametric downconversion (SPDC) where two lower-frequency pho-

tons are generated when a strong pump field interacts with a nonlinear medium. The

generated photons can be correlated and entangled in various degrees of freedom

such as polarization,5 frequency,6 and orbital angular momentum.7,8 To measure

the quality of the source we often employ Hong-Ou-Mandel effect.9 This effect is

based on two photon interference. If two incident photons are indistinguishable and

arrive at the same time and the same spot at the balanced beam splitter, then both

photons leave in the same output mode.

To date, most quantum information applications use the polarization of pho-

tons, or polarization entanglement between photon pairs, as a quantum resource.

However, the spectrum of the photons can be considered a quantum resource by

itself. To faithfully describe frequency entanglement one needs to use infinite dimen-

sional Hilbert space. This offers a possibility of implementing quantum algorithms

employing the high dimensional Hilbert space either because it is required by the

nature of quantum state (qudits) or because it is associated with advantage in the

5



6 CHAPTER 2. Contemporary state of research

form of enhanced efficiency. Furthermore, the frequency properties of entangled

two-photon states cannot be neglected even when entanglement takes place in the

polarization or spatial degrees of freedom. In this case, the corresponding entangled

states make use only of a portion of the total two-photon quantum state, and any

frequency correlations therefore supply a “which path” information and degrade the

degree of entanglement.

The optimal bandwidth, as well as the most appropriate type of frequency cor-

relations between paired photons, depends on the specific quantum information

application we consider. Atom-photon interfaces address specific atomic transitions

that require ultra-narrow-band quantum light (∼ MHz), while the generation of

ultrahigh fluxes of entangled photons (∼ µW) with nonclassical properties requires

light with largely enhanced bandwidth (∼ tens of nm).10,11 Some protocols for

quantum enhanced clock synchronization and position measurement rely on use

of frequency correlated photons.12 Heralded single photons with a high degree of

quantum purity can be obtained by generation of uncorrelated paired photons. The

tolerance against the effects of mode mismatch in linear optical circuits, the dom-

inant cause of photon distinguishability, can be enhanced by using photons with

appropriately tailored wave-packet shape.13

The most common configuration for the source of photon pairs uses continuous

wave pumping producing frequency anticorrelated photons. Other specific frequency

correlations, such as correlated or uncorrelated photons, can occur in special crystals

with suitable pump light conditions, specific values of the nonlinear crystal length

and dispersive properties of the nonlinear crystals.14,15 One strategy for engineering

the bandwidth is based on the proper preparation of the downconverting crystal.

Frequency-entangled pairs of photons with a largely enhanced bandwidth can be

generated in chirped quasi-phase-matched nonlinear crystals,16 while paired photons

with a largely reduced spectral width can be generated in cavity SPDC.17 Properly

designed SPDC configurations with nonlinear crystal superlattices allow tailoring

the frequency correlations of paired photons.18

In general, noncollinear SPDC geometries allow control of the bandwidth of

downconverted photons as well as of the waveform.19 SPDC configurations, where

the downconverted photons counter-propagate, allow reducing the spectral width

of light.20,21 Noncollinear SPDC allows the generation of frequency-correlated and

uncorrelated photons by controlling the pump beam width and the angle of emission

of the downconverted photons.22,23

Huge drawback of sources based on SPDC is their limited scalability. With the
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state of art technology it is unfeasible to generate more than four pairs of photons.24

Nevertheless states of light are less susceptible to decoherence because of weak

interaction strength with environment. This feature of photons is widely explored

in quantum information applications where the ultimate goal is to build a quantum

computer. Quantum computer25–27 promises computational power beyond what

classical computers can offer. There are several areas where quantum computers

offers speedup and can be effectively used to solve problems, such as searching over

a large database,28 large number factorization29 or efficient simulation of quantum

systems.30 Quantum computer, like its classical counterpart, can be constructed

from elementary blocks called gates. One of the most important logic gate for

classical computer is the Toffoli gate.30 The Toffoli gate is universal reversible

three-qubit gate,31 sometimes called Controlled-Controlled-NOT, which applies the

NOT operation on the target qubit conditionally on logical states of two control

qubits. Quantum counterpart of the Toffoli gate is also reversible and with the

combination with one-qubit Hadamard gate gives an universal quantum gate set.32

Three-qubit quantum gates play important role in quantum error correction33 and

fault tolerance.34 Nevertheless, three-qubit quantum gates are not elementary and

can be decomposed into two-qubit quantum gates25,35,36 which are universal for

quantum computation.

One of the earliest proposals for implementing quantum computation37 used

qubits, each of which represented by a single photon in two optical modes. The

major obstacle for experimental demonstration was the difficulty of realizing the

nonlinear interactions between photons, which are needed for the implementation of

two-qubit operations. This obstacle was overcame by Knill, Laflamme and Milburn

(KLM) in 2001, using linear optical elements, ancilla photons and post-selection.38

They used measurement to nondeterministically realize the optical nonlinearity re-

quired for two-qubit entangling gates. Moreover, they also showed that probability

of success of those nondeterministic quantum gates can be increased arbitrarily close

to one. Since then, there has been tremendous effort in theoretical development of

linear optics schemes39–47 and their experimental realizations.48–65 Also note that

there are many other physical systems explored experimentally to create univer-

sal quantum gates besides photons, such as atoms,66,67 ions,68–70 superconducting

circuits71,72 or nuclear magnetic resonance.73–76

Quantum computation requires the ability to perform arbitrary unitary opera-

tions on a set of quantum states. Each unitary operation can be constructed as an

array of elementary gates.36 But one can take inspiration from classical computers,
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where the gate array is fixed and program specifies the operation to be performed

on the data. It is intriguing to attempt to generalize this concept to quantum

computing.30

Unfortunately, Nielsen and Chuang in their seminal paper77 proved that it is not

possible to build a deterministic universal quantum gate array. They showed that

an n qubit quantum register can perfectly encode at most 2n distinct quantum oper-

ations. Nevertheless it is possible to construct approximate programmable quantum

gates and optimize their performance for a given size of the program register.78–83

There are two complementary strategies one can pursue. One strategy designs gates

that always deterministically provide an output, but add some noise to the output

states.83 The second strategy avoids the extra noise at a cost of reduced probability

of success.77–79 These gates involve measurements whose outcomes herald success or

failure. The single-qubit programmable quantum measurement devices,84–93 where

the state of program qubit determines the measurement on data qubit, were imple-

mented for single-photons94 and for nuclear spins in a nuclear magnetic resonance

experiment.95 Moreover, a programmable discriminator of coherent states was re-

alized96,97 and also programmable unitary quantum gate for photonic qubits has

been reported.62 Note that there is an alternative to the traditional circuit-based

approach, called the cluster-state model of quantum computing, or one-way quan-

tum computing.98,99 This model is based on employing an entangled multi-qubit

quantum state, where the input state is encoded into some qubits. Proper mea-

surements and feed forward are used to evolve the quantum state and “teleport” it

towards the desired final state, which is than measured to complete the computa-

tion.



Chapter 3

Methods and tools

3.1 From classical to quantum

Light as an electromagnetic field is described by electric and magnetic intensity vec-

tors ~E(~r, t) and ~H(~r, t) which obey Maxwell equations.101 For the electromagnetic

field in free space the electric intensity vector ~E (or magnetic intensity vector ~H)

satisfies the wave equation

∇2 ~E − 1

c2

∂2 ~E

∂t2
= 0, (3.1)

where c is speed of light and t is time. Consider the radiation field in a large

finite cubic cavity of volume V . Linearity of the equation (3.1) allow to express the

electric intensity vector ~E(~r, t) in form

~E(~r, t) =
∑

k

√(
~νk

2ε0V

)
[αke

−i2πνkt~uk(~r) + α∗ke
i2πνkt~u∗k(~r)], (3.2)

where ~ is the reduced Planck constant, νk is mode frequency, ε0 is free space

permittivity, αk is classical complex amplitude, ~uk(~r) is mode function satisfying

equation (3.1) and boundary conditions. Electromagnetic field can be intuitively de-

scribed as an ensemble of simple electromagnetic oscillators. The study of the quan-

tum features of the light requires the quantisation of the electromagnetic field.102,103

This is accomplished by substitution in equation (3.2) αk → âk and α∗k → â†k, re-

spectively. The electric field operator reads

Ê(~r, t) = Ê+(~r, t) + Ê−(~r, t) =
∑

k

√(
~νk

2ε0V

)
[âke

−i2πνkt~uk(~r) + â†ke
i2πνkt~u∗k(~r)],

(3.3)

9
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where operators Ê+(~r, t) and Ê−(~r, t) refer to the positive and negative frequency

part of the electric field operator, respectively. Positive and negative frequency part

of the electric field operator are related by Ê+(~r, t) = [Ê−(~r, t)]†. Operator â† is

called creation operator and represents creation of one photon in a given mode of

electromagnetic field. Operator â represents annihilation of one photon in the given

mode of electromagnetic field and is called annihilation operator. Since operators

â† and â represent photons therefore they obey bosonic commutations relations

[âk, âk′ ] = [â†k, â
†
k′ ] = 0, [âk, â

†
k′ ] = δk, k′ . (3.4)

With the aid of operators â† and â we can define photon number operator

n̂k = â†kâk, (3.5)

which describes number of photons in the particular field mode.

3.2 Fock states representation

Fock states are defined as eigenstates of the number operator

n̂|n〉 = n|n〉, (3.6)

where n is real number. For the normalized Fock state |n〉, it holds

|n〉 =
â†n√
n!
|0〉. (3.7)

Fock states are orthonormal

〈n|m〉 = δn,m (3.8)

and copmlete
∞∑

nk=0

|nk〉〈nk| = 1̂. (3.9)

Fock states form a complete set of basis vectors in the Hilbert space and every

state can be described in terms of the Fock states. For creation and annihilation

operators holds

â† |n〉 =
√
n+ 1 |n+ 1〉 (3.10)

â |n〉 =
√
n |n− 1〉 (3.11)

and vacuum stability condition requires that â |0〉 = 0.
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3.3 Hong-Ou-Mandel interference

Hong-Ou-Mandel (HOM) effect is phenomenon where two photons interfere on the

beam splitter. If incident photons are indistinguishable and arrive at the same time

and place at the beam splitter then both photons leave in the same output mode.9

To illustrate this phenomenon, let us consider lossless beam splitter with â†in,

b̂†in input mode operators and â†out, b̂
†
out output mode operators. The beam splitter

transformation of the input modes in Heisenberg picture can be written as

â†in = tâ†out + rb̂†out and b̂†in = tb̂†out − râ†out, (3.12)

where t and r are real amplitude transmissivity and reflectivity, respectively.

Let’s assume for the simplicity that we have only one photon in each input arm

of the beam splitter and input state is

|ϕ〉in = â†inb̂
†
in |0, 0〉. (3.13)

The transformation of the input state |ϕ〉in by beam splitter yields

|ϕ〉in ⇒ |ϕ〉out = (tâ†out + rb̂†out)(tb̂
†
out − râ†out)|0, 0〉

= (t2 − r2)|1, 1〉+
tr√

2
(|0, 2〉 − |2, 0〉). (3.14)

For balanced beam splitter t = r = 1√
2

term |1, 1〉 is equal to zero and both photons

simultaneously exit the same output port of the beam splitter. We can see from

equation (3.14) that output a and b are equally probable. If we measure with detec-

tor at each output port seeking for positive detection event at both detectors at the

same time, i. e. we perform coincidence measurement, we will see no simultaneous

detection events.

The quality of the HOM effect can be characterized by interference visibility V

on the beam splitter. Visibility is defined

V =
Rmax −Rmin

Rmax +Rmin

, (3.15)

where Rmax and Rmin are maximum and minimum number of coincidences, respec-

tively.
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3.4 Beam transformation by the diffraction gra-

ting

Diffraction grating is an optical element with periodic structure which diffracts

incoming light into one or more beams traveling in various directions. Incident and

diffracted beams are related by grating equation

sin(θi) + sin(θm) =
mλ

d
, (3.16)

where θi is the angle of incidence at grating, θm is the output diffraction angle, m

is order of the diffraction, λ is wavelength and d groove spacing of the grating.

Figure 3.1: Diffraction grating, where incoming beam propagating in direction ~k0

and ~k are diffracted to the mth diffraction mode in ~km0 and ~km directions.

Consider now non-monochromatic light beam with central angular frequency ω0

which propagates in the z direction. The main direction of propagation is defined

by ~k0. Deviations from the central frequency and main direction of propagation for

the incident beam, see Fig. 3.1, can be written

Ω = ω − ω0 and Θi = θi − θi0. (3.17)

The deviation of the diffracted angle Θm = θm − θm0, according to Eq. (3.16),

depends not only on angle of incidence θi but also on the angular frequency ω.

The approximate solution for diffracted angle deviation can be found by Taylor

expansion of the grating Eq. (3.16) to the first order104 which yields

Θm = αΘi + βΩ, (3.18)

where α = − cos(θi0)
cos(θm0)

and β = − mλ20
2πcd cos(θm0)

. The x component of the vector ~k

describing incident beam can be written px = |~k|Θi. Similarly, for the x component
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of the vector ~km describing diffracted beam we can write with the help of (3.18)

px,m = |~k|Θm = |~k|αΘi + βΩ

= αpx + β|~k|Ω = αpx + β|~k0|Ω, (3.19)

where we did Taylor expansion of the |~k| and neglected the second and higher orders.

Eq. (3.19) shows transformation of the x component of the ~k by diffraction grating.

Note here, that light beam always propagates in the z direction. The transformation

of the beam amplitude by diffraction grating is

E(px, py, kz, ω)→ E

(
px
α
− k0β

α
Ω, py, kz, ω

)
= E

(
px
α

+
λ0ε

αc
Ω, py, kz, ω

)
, (3.20)

where ε = m
d cos(θm0)

is the angular dispersion and c is speed of light.

3.5 Spontaneous parametric down-conversion

The most widely used method for the generation of pairs of entangled and correlated

photons is spontaneous parametric down-conversion (SPDC). This process consists

in interaction between a nonlinear medium and strong electromagnetic field called

pump. When strong pump field interacts with a nonlinear medium one photon from

pump field can be converted into two lower-frequency photons called signal and idler.

Energy and momentum of signal and idler photons sum up to energy and momen-

tum of the pump photon while nonlinear medium is left unchanged. Properties of

generated photons depend on nature of the pump field (e.g. continuous-wave or

pulse pumping), geometry of he setup (collinear or non-collinear) and phase match-

ing conditions (type I, type II, etc.). This can result in signal and idler photons

being entangled in polarization or spin angular momentum,5 in frequency,6 and in

orbital angular momentum.7,8

The effective Hamiltonian for the three mode SPDC process in the interaction

picture is given by

ĤI(t) = ε0

∫

V

χ(2)Ê+
p (~r, t)Ê−s (~r, t)Ê−i (~r, t)dV +H.c., (3.21)

where ε0 is the permittivity of free space, χ(2) is the second order nonlinear sus-

ceptibility tensor, V is the volume of the nonlinear medium, t is time, and H.c.

means the Hermitian conjugate. Nonlinear medium illuminated in the z direction
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by strong pump beam is described by electric field operator Êp, which is treated

classically. Positive frequency part of the electric field operator is given by105

Ê+
p (~x, z, t) =

∫
dωpd~ppE(~pp, ωp) exp{i(kpz + ~pp[~x+ z~ρp]− ωpt)}, (3.22)

where ωp is angular frequency of the pump beam, ~pp = (px, py) is the transverse

momentum, E(~pp, ωp) is the classical amplitude of the pump field, ~x = (x, y) is the

position in the transverse plane, kp(~pp, ωp) =
√

(ωpnp

c
)2 − |~pp|2 is the longitudinal

wave number inside the nonlinear medium, np is the refractive index at the pump

wavelength, and ~ρp = (ρpx, ρpy) is the Poynting vector walk-off parameter of the

pump beam due to the different propagation directions of the energy and phase

fronts inside the anisotropic nonlinear medium. Operator Ê−j refer to the negative

frequency part of the signal (j = s) and idler (j = i) electric field operators and are

given

Ê−j (~x, z, t) ∝
∫
dωjd~p â

†
j(~pj, ωj) exp{−i(kjz + ~pj[~x+ z~ρj] + ωjt)}, (3.23)

where ωj is angular frequency of the jth beam, ~pj = (px, py) is the transverse momen-

tum, â†j(~pj, ωj) is the creation operator for the jth field, kj(~pj, ωj) =
√

(
ωjnj

c
)2 − |~pj|2

is the longitudinal wave number inside the nonlinear medium, nj is the refractive

index at the jth wavelength, and ~ρj = (ρjx, ρjy) is the Poynting vector walk-off

parameter of the jth beam in the anisotropic nonlinear medium.

The calculation of the two-photon quantum state within the first order of the

perturbation theory gives

|Ψ〉 = |0, 0〉 − i

~

∫ ∞

−∞
dtĤI(t)|0, 0〉, (3.24)

where |0, 0〉 is the vacuum state for the signal and idler mode.

3.6 Energy and momentum conversion laws for

SPDC

The energy and momentum conversion laws for the SPDC process can be written

in the form

ωp = ωs + ωi (3.25)

~kp = ~ks + ~ki, (3.26)
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where ωj and ~kj are angular frequency and wave vector of the jth field, where

j = p, s, i denotes pump, signal and idler field, respectively.

Let us show one consequence of the Eq. (3.25) and (3.26). Consider now, for

the simplicity, collinear SPDC process pumped by monochromatic continuous-wave

laser at angular frequency ωp. One photon from pump field is converted into two

different lower-frequency photons at angular frequencies ωs and ωi, let say that

ωs ≥ ωi. The Eq. (3.26) can be rewritten

ωpn(ωp) = ωsn(ωs) + ωin(ωi), (3.27)

where n(ωj) is refractive index at frequency ωj. If we express ωi from the Eq. (3.25)

and put it into Eq. (3.27) we get

n(ωp)− n(ωi) = (n(ωs)− n(ωi))
ωs
ωp
. (3.28)

For the medium with normal dispersion holds

ωi ≤ ωs ≤ ωp and n(ωi) ≤ n(ωs) ≤ n(ωp) (3.29)

and Eg. (3.28) can not be satisfied. Only birefringent medium can fulfill Eg. (3.28)

and this is reason why mostly uniaxial or biaxial optical medium are used for the

SPDC processes.

Eq. (3.26) is often rephrased to equation

∆k = ~kp − ~ks − ~ki, (3.30)

where ∆k is called phase mismatch. Eq. (3.30) is called phase-matching condition.

The intensity of the SPDC process is limited by

I ≈ sinc2

(
∆kL

2

)
, (3.31)

where L is length of the nonlinear medium.

Consider now, collinear SPDC process with broadband pump field. The angular

frequency of all interacting fields in the medium can be written ωj = ω0j+Ωj, where

j = p, s, i denotes pump, signal and idler field, respectively.

Let assume that relation between central angular frequency ω0j and angular

frequency deviation Ωj is ω0j � Ωj. To gain maximum intensity of the SPDC

process Eq. (3.30) must be equal to zero for all angular frequencies interacting in
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the nonlinear crystal. Eq. (3.25) and (3.26) can be now rewritten in the form of

ωp = ωs + ωi

ω0p = ω0s + ω0i

Ωp = Ωs + Ωi

kp(ωp) = ks(ωs) + ki(ωi). (3.32)

The phase mismatch Eq. (3.30) can be expand into Taylor series around the central

angular frequencies ω0j and we get

∆k =
∞∑

l=0

1

l!

∂klp
∂ωlp

∣∣∣∣∣
(ω0p)

(Ωp)
l −

∞∑

l=0

1

l!

∂kls
∂ωls

∣∣∣∣∣
(ω0s)

(Ωs)
l −

∞∑

l=0

1

l!

∂kli
∂ωli

∣∣∣∣∣
(ω0i)

(Ωi)
l

= kp(ω0p)− ks(ω0s)− ki(ω0i) +NpΩp −NsΩs −NiΩi + (3.33)

+
1

2

[
DpΩ

2
p −DsΩ

2
s −DiΩ

2
i

]
+ ...,

where Nj =
∂kj
∂ωj

∣∣∣
(ω0j)

represents inverse group velocity and Dj =
∂2kj
∂ω2

j

∣∣∣
(ω0j)

represents

inverse group velocity dispersion. Generally, we limit ourselves to the second order

of the Taylor expansion of Eq. (3.33).



Chapter 4

Tunable control of the frequency

correlations of entangled photons

The motivations to control the joint spectrum of paired photons come from both

the applied and fundamental points of view. Frequency-uncorrelated photons are

desired because they provide a source of heralded pure single photons, an impor-

tant tool in quantum computing and communications.106,107 On the other hand,

frequency-correlated and anticorrelated photons are important for quantum metro-

logy, because these types of correlations can enhance the precision of some existing

time measurement and synchronization techniques.108–110 Moreover, the possibil-

ity to generate symmetric spectral shapes of entangled photons guarantees that all

the distinguishing information that may come from the spectra of the photons is

erased. This is a key issue when considering applications based on interferometric

techniques, where any distinguishability reduces the visibility of the interference

pattern.111–113

The search for a way to control the joint spectrum of paired photons has been of

paramount importance in the past few years. In particular, techniques based on the

choice of specific materials and wavelengths have been used to obtain frequency-

uncorrelated114 and frequency-correlated photons.115 Experiments that allow a tun-

able control of the joint spectrum have also been reported.116–118

4.1 Pulse front tilt technique and SPDC

In this section we will show how pulse front tilt (PFT) technique can affect fre-

quency correlations of entangled photon pairs. The control over the joint spectrum

17
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is based on the possibility of modifying phase mismatch ∆k by introducing angular

dispersion into the pump and the downconverted beams. The introduction of an-

gular dispersion enables us to tune the frequency characteristics of paired photons

by manipulating the transverse momentum.

Let us consider a collinear type II SPDC configuration in uniaxial second order

nonlinear crystal of the length L. The optic axis of the crystal is contained in the

XZ plane. Laser pump beam at angular frequency ωp = ω0p + Ωp propagating in

the z direction is described by Eq. (3.22), so that ~ρp = (ρp, 0). The pump beam

is diffracted by diffraction grating oriented in the x direction placed in the front of

the nonlinear crystal so that each angular frequency component is dispersed in a

different direction. The transformation of the pump beam amplitude E(px, py, ω0p+

Ωp) due to the diffraction grating, see chapter 3.4, can be written as

E(px, py, ω0p + Ωp)→ E

(
px
α
− tan(ξ)

αc
Ωp, py, ω0p + Ωp

)
. (4.1)

When angular dispersion is applied to a pulse, it causes the front of the pulse to

Figure 4.1: Angular dispersion tilts the front of a pulse by an angle ξ. After the

element that introduces angular dispersion (prism or grating), the pulse front is no

longer perpendicular to the direction of propagation. Colors refer to the intensity

profile of the front of the pulse.

be tilted by an angle ξ, see Fig. 4.1. It means that the front of the pulse acquires

a temporal delay that depends on its transversal coordinate.119 The tilt angle is

tan(ξ) = −λ0pε, where ε = m/(d cos(θm0)) is the angular dispersion with d being

the groove spacing of the grating, m the diffraction order and λ0p = 2πc/ω0p.

The electric field operator for the signal and idler photon is given by Eq. (3.23).

For the configuration mentioned above the walk-off parameter for signal and idler

wave is ~ρs = (ρs, 0) and ~ρi = (0, 0). At the output face of the nonlinear crystal
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(z = L), a second grating is used to re-collimate the beam by compensating for

the angular dispersion introduced by the first grating. The tilt of the pump beam

is transferred to the mode function of the downconverted photons and to remove

it we must employ another diffraction grating with parameters104 α′ = 1/α and

ε′ = −ε/α. The transformation of the transverse momentum ~pj of the two photon

state function is similar as in the transformation of the pump beam amplitude and

yields

~ps = (psx, psy)→ (psx, psy) = (αpsx + Ωs tan ξ/c, psy)

~pi = (pix, piy)→ (pix, piy) = (αpix + Ωi tan ξ/c, piy). (4.2)

We made assumption that the dispersive gratings act only as dispersive elements.

The quantum state of the downconverted photons at the output face of the nonlinear

crystal reads

|Ψ〉 =

∫
d~psd~pidωsωi Φ(~ps, ~ps, ωs, ωi)â

†
s(~ps, ωs)â

†
i (~pi, ωi)|0, 0〉, (4.3)

where two photon state function is105

Φ(~ps, ~pi, ωs, ωi) = E(~ps + ~pi, ωs + ωi)sinc

(
∆kL

2

)
exp

{
i∆kL

2

}
, (4.4)

where

∆k = kp(psx + pix, psy + piy, ωs + ωi) + (psx + pix) tan(ρp)

− ks(psx, psy, ωs)− psx tan(ρs)− ki(pix, piy, ωi). (4.5)

Eq. (4.4) describes an entangled state in both, the signal and idler transverse

wavenumber (~ps, ~pi) and signal and idler frequency (ωs, ωi).

Generally, when we are interested in the frequency properties of paired photons,

the light beams are projected into single modes by, for example, coupling the light

into singlemode fibers. All the information concerning the frequency correlations of

paired photons with frequencies ωj can thus be obtained from the joint spectrum, or

biphoton, of the two photon state, Φ(~ps = 0, ~pi = 0, ωs, ωi) ≡ Φ(ωs, ωi).
111–113 The

joint spectral intensity, which corresponds to the probability of detecting a photon

with frequency ωs in coincidence with the other photon with frequency ωi, writes

S(ωs, ωi) = |Φ(ωs, ωi)|2.

The introduction of angular dispersion into the pump and the down converted

photons results in an effective inverse group velocity N ′j and effective inverse group
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velocity dispersion D′j
120

N ′j = Nj +
tan(ξ) tan(ρj)

c

D′j = Dj +
tan2(ξ)

c2kj
, (4.6)

where Nj and Dj are the inverse group velocity and inverse group velocity dispersion

due to the the material dispersive properties, and c is the speed of light. By per-

forming the second-order Taylor expansion, ∆k can be written as a function of the

effective inverse group velocities and group velocity dispersion of the all interacting

waves

∆k = (N ′p −N ′s)Ωs + (N ′p −N ′i)Ωi

+
1

2
(D′p −D′s)Ω2

s +
1

2
(D′p −D′i)Ω2

i +D′pΩsΩi, (4.7)

where Ωj is the frequency detuning of signal (j = s) and idler (j = i) photons

from the central frequency. The possibility to tune ∆k, and thereby the frequency

correlations, by introducing angular dispersion can be understood by inspecting the

effective inverse group velocities N ′j and effective inverse group velocity dispersion

D′j of Eq. (4.6). For the case of type II SPDC processes, where signal and idler

wave has different group velocities, we can restrict ourselves only to the first order

of Taylor expansion of ∆k. If signal and idler waves has the same group velocities

(type I SPDC process) we have to take into account Taylor expansion of ∆k to the

second-order.

The joint spectral amplitude Φ(ωs, ωi) ≡ Φ(Ωs,Ωi) is determined by the spec-

tral shape of the pump beam and by the corresponding effective phase-matching

conditions inside the nonlinear crystal. These depend on the relationship between

all the group velocities.14 Under the assumption of type II SPDC process the per-

fect phase matching is achieved for signal and idler photons angular deviations of

angular frequencies that fulfill105

Ωi

Ωs

= −Np + tan(ξ) tan(ρp)

c
−Ns − tan(ξ) tan(ρs)

c

Np + tan(ξ) tan(ρp)

c
−Ni

. (4.8)

There are three possible solutions of Eq. (4.8) which corresponds to frequency an-

ticorrelated, correlated and uncorrelated photon pairs. For highly anticorrelated

photons in frequency, where Ωs = −Ωi and effective group velocities are equal
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N ′s = N ′i , the tilt angle is

ξ = arctan

(
c(Ni −Ns)

tan(ρs)

)
. (4.9)

For highly frequency correlated photon pairs, Ωs = Ωi, the group velocities fulfills

so-called group velocity matching condition111 N ′p = (N ′s +N ′i)/2 and the tilt angle

is

ξ = arctan

(
c(2Np −Ni −Ns)

tan(ρs)− 2 tan(ρp)

)
. (4.10)

If we define two spectral intensities S± (Ω±) =
∫
dΩ±|Φ (Ω+,Ω−) |2 in the directions

Ω± = Ωs±Ωi than frequency anticorrelated (correlated) photons correspond to the

case where the bandwidth of S+ is much narrower (wider) than the bandwidth of

S−.

The third solution corresponds to frequency uncorrelated photon pairs where

ratio between Ωi and Ωs goes to zero or infinity. There are two possible physical

realizations for which the tilt angle can be expressed

ξ = arctan

(
c(Np −Ns)

tan(ρs)− tan(ρp)

)
or ξ = arctan

(
c(Ni − Np)

tan(ρp)

)
. (4.11)

4.2 Indirect measurement of the frequency cor-

relations

To demonstrate the feasibility of the technique described above we set up an exper-

iment shown in Fig. 4.2.

The second harmonic beam (500 mW of average power, 76 MHz repetition rate)

of a femtosecond Ti:Sapphire laser tuned at 810 nm is directed at a diffraction

grating (Gr1) that introduces the appropriate amount of pulse-front tilt (ξ) in the

plane determined by the pump beam direction of propagation and the optic axis

of the nonlinear crystal. The measured bandwidth of the pump beam was ∆λp =

3.6 nm (FWHM). The pulses diffracted off the grating enter a 2-mm thick BBO

crystal where degenerate collinear type-II SPDC occurs. After the downconversion

process, the angular dispersion of the downconverted photons is removed by an

inverse grating (Gr2).

To evaluate the different types of frequency correlations and the bandwidth,

a Hong-Ou-Mandel (HOM) interferometer is used.9,105 A variable polarization-

dependent delay line made of birefringent quartz (DL) is inserted between the non-

linear crystal and the beam splitter, which allows us to add a variable time delay
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M2G1C&C

D1

IF1

P1

C

G2

D2 IF2 P2 BS DL M1

Figure 4.2: Experimental setup. SHG: second harmonic generation; M : steering

mirrors; Gr: gratings; C nonlinear crystal; DL: delay line; BS: beamsplitter; P :

polarizers; IF : 10-nm interference filters; D: single-photon avalanche photodiodes;

C&C: counter and coincidence electronics.

(τ) between the generated paired photons. After the beam splitter, polarizers (P )

are used to control the polarization of the photons. 10-nm (FWHM) interference

filters are located in front of single-photon avalanche photodiodes (SPCM-AQR-14-

FC, Perkin-Elmer), where the coincident arrival of two photons in a time window

of ' 12 ns is measured.

The coincidence rate R (τ, θa = −45o, θb = 45o), where θa,b are the angles of the

two polarizers, is given by105,116

R (τ) =
1

2

[
1− 1

2

∫
dΩ−S0 (Ω−) exp (−iΩ−τ)

]
, (4.12)

where S0 (Ω−) =
∫
dΩ+Φ (Ω+,Ω−) Φ∗ (Ω+,−Ω−).

Fig. 4.3 shows our main experimental results in this section. The normalized

number of coincidences (for the sake of comparison) is plotted versus the time

delay introduced by the delay line. When no PFT (ξ = 0o) is applied to the

pump pulse, the visibility of the HOM dip, defined by Eq. (3.15), drops to V =

38%. The degradation of frequency anticorrelation due to the broadband pump

beam introduces distinguishing information between the ordinary and extraordinary

downconverted photons. The center of the dip is located at τ0 = (N ′s −N ′i)L/2.121

The tilt angle for anticorrelated photons is ξ = 38o and we expect τ0 = 0.

This amount of angular dispersion is introduced by a grating of 1200 lines/mm and

diffraction order m = 1. Grating Gr2 then has 600 lines/mm and m = −1. For



23

-1200 -1000 -800 -600 -400 -200 0 200 400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0

20000

40000

60000

80000

100000
N

o
rm

a
liz

e
d
 N

u
m

b
e
r 

o
f 

C
o
in

c
id

e
n
c
e
s

Delay τ [fs]

 S
in

g
le

s
 [

c
o
u
n
ts

/2
0
s
]

Figure 4.3: Normalized number of coincidences and singles as a function of time de-

lay in a Hong-Ou-Mandel interferometer for three different values of the pulse front

tilt of the pump. •: no pulse-front tilt (ξ = 0o); �: highly frequency anticorrelated

photons (ξ = 38o); N: highly frequency correlated photons (ξ = −52o); �: single

counts. Solid lines are the theoretical predictions. The experimental points are raw

data without any corrections for measurement noise. The error bars correspond to

one standard deviation and are computed from the measured data.

anticorrelated photons we obtain S0 (Ω−) = S− (Ω−). The measured visibility of

the HOM dip is now 83%. Notice that we generate highly anticorrelated photons

even when we are using a broadband pump beam.

The generation of highly correlated photons requires a tilt angle ξ = −52o. We

expect τ0 = (N ′s −N ′i)L/2. A grating Gr1 with 2400 lines/mm and m = −1,

and Gr2 with 1200 lines/mm and m = 1 are used. The spectral intensity writes

S0 (Ω−) = S− (Ω−) exp{i(N ′s − N ′i)L/2}. The visibility of the HOM dip goes up

to 93%. The shape of the dip is triangular, as corresponds to a typical type II-

like SPDC process.121 The measured values of τ0 agree well with the theoretical

predictions. Typical values of the measured numbers of coincidences were 6000, 300

and 100 counts/min in the case of no tilt, anticorrelated and correlated photons,

respectively. In general, the degree of frequency anticorrelation or correlation might

be modified by using crystals of different length or filters with different bandwidth.



24 CHAPTER 4. Tunable control of the frequency correlations of entangled photons

-45 0 45 90 135 180 225 270 315 360 405 450
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 Polarizer angle θ
b
 [deg]

 

 

N
o
rm

a
liz

e
d
 N

u
m

b
e
r 

o
f 
C

o
in

c
id

e
n
c
e
s

-45 0 45 90 135 180 225 270 315 360 405 450
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

(b)

 Polarizer angle θ
b
 [deg]

 

 
(a)

Figure 4.4: Coincidence rate as a function of the polarizer angle θb. (a) �: highly

anticorrelated photons. •: no tilt. (b) �: highly correlated photons with θa = −45o

and N with θa = −30o; black line: no tilt. Solid lines are sin2-like fits to the raw

experimental data. The error bars correspond to one standard deviation and are

computed from the measured data.

The use of frequency correlated (anticorrelated) photons allows the erasing of the

distinguishing information coming from the spectra of the photons when considering

polarization entanglement. Under our experimental conditions, the two-photon

quantum state in polarization space writes

|Ψ〉〈Ψ| = ε|ψ〉〈ψ|+ (1− ε)/2 {|H〉s|V 〉i〈H|s〈V |i + |V 〉s|H〉i〈V |s〈H|i} , (4.13)

where |ψ〉 = 1/
√

2[|H〉s|V 〉i + exp{i∆}|V 〉s|H〉i]. The purity of the state is P =

(1 + ε2) /2 and the visibility of R (τ0, θa = −45o, θb) is V = ε| cos ∆|.
Fig. 4.4(a) shows R (τ0, θa = −45o, θb) for frequency anticorrelated photons when

the angle θb is changed. The corresponding case with no tilt is also shown for

comparison. The visibility increases from 58% (no tilt) to 88%. Fig. 4.4(b) shows

the case for correlated photons with θa = −45o and −30o. The visibility goes up to

95% in both cases. Thus the purity of the state is greater than 0.95.
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4.3 Direct measurement of the frequency corre-

lations

To perform direct measurement of the joint spectral intensity S(ωs, ωi) we changed

previous setup to arrangement depicted in Fig. 4.5. We changed nonlinear crys-

tal to 3.5 mm thick BBO cut for degenerate collinear type-II phase-matching to

increase probability of generating photon pairs. Nonlinear crystal was placed be-

tween a pair of diffraction gratings: G1 in the path of the pump photons and G2

in the path of the downconverted photons. The first grating introduces the pulse-

front tilt and the second grating removes the angular dispersion from the down-

converted beam. The crystal was pumped by the second harmonic (220 mW of

average power) of a femtosecond Ti:sapphire laser tuned at 800 nm. The measured

bandwidth (FWHM) of the pump beam at 400 nm was ∆λp = 2 nm. After the

second grating, the downconverted photons were separated by a polarizing beam

splitter (PBS) and collected into multimode fibers. To perform the direct measure-

ment of the joint spectral intensity S (ωs, ωi), the signal and idler photons were sent

to two monochromators (Jobin Yvon MicroHR) Mono1 and Mono2, respectively.

The outputs of the monochromators were coupled into optical fibers and detected

by single-photon counting modules (SPCM-AQR-14-FC, Perkin-Elmer) in order to

record singles and coincidence counts between the two detectors. The joint spectral

intensity is measured by scanning the central wavelengths of the bandpass of the

monochromators.

The effect of the gratings G1 and G2 is to introduce the appropriate amount of

angular dispersion, or equivalently pulse-front tilt ξ, into the pulsed pump and the

down converted photons. The tilt is introduced in the plane determined by the pump

beam and the optic axis of the nonlinear crystal. The gratings were chosen and

placed in the setup in such a way that they introduce opposite angular dispersion;

this guaranties that the tilt only modifies ∆k. The groove densities of G1 and G2

were 1200 and 600 grooves per mm, respectively, in the frequency anticorrelated

and uncorrelated cases. In the frequency correlated case, the same pair of gratings

could have been used, but in order to improve the diffraction efficiency, a pair of

gratings with 2400 and 1200 grooves per mm were used instead.

The left column of Fig. 4.6 displays the experimental measurements that demon-

strate the full tunability of the frequency correlations of paired photons. The differ-

ent joint spectral intensities were measured in the same experimental setup at the
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Figure 4.5: Experimental setup. SHG: second harmonic generation; M: dichroic

mirrors; G: diffraction gratings; C: nonlinear crystal; PBS: polarization beam split-

ter. Mono: monochromators. D: single-photon counting modules; &: counter and

coincidence electronics.

same pump wavelength and with the same crystal. The only varying parameter was

the amount of pulse front tilt ξ introduced by the diffraction gratings. Practically,

the tilt tuning was achieved by changing the angle of incidence at the gratings. For

the sake of comparison, the theoretical predictions are depicted in the right column.

They are obtained by plotting S (ωs, ωi) = |Ep (ωs + ωi) |2sinc2 (∆kL/2), where the

pump frequency distribution is assumed to be Gaussian with a FWHM bandwidth

of 2 nm and ∆k is expanded up to the second order in a Taylor series. The sec-

ond order, however, introduces only a slight correction as it is the first order that

dominates in type II phase matching.

The first row of Fig. 4.6 shows the case with no tilt. As expected for a pulsed

pump and type II phase matching, the spectra of the signal and idler are different,

one being narrower than the other. This is due to the fact that the downconverted

photons have different polarizations and by extension different group velocities and

group velocity dispersion. The joint spectrum lies neither along the diagonal (+45o),

nor the antidiagonal line (−45o). The distinguishability between the spectra of the

signal and idler photons results in low visibility in interference experiments with

pulsed sources.111–113
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Figure 4.6: Shape of the frequency correlations. Experiment: left column; theoreti-

cal prediction: right column. (a) and (b): no tilt, ξ = 0o; (c) and (d): anticorrelated

photons, ξ = 38o; (e) and (f): uncorrelated photons, ξ = −20o; (g) and (h): corre-

lated photons ξ = −52o.

The second row of Fig. 4.6 depicts frequency anticorrelated photons, the same

type of frequency correlations that would be obtained with a continuous wave pump,

but in this case the entangled photon pairs were generated with a broadband pump.

The pulse front tilt needed to produce these extremely highly entangled and indistin-
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guishable photons was ξ = 38o. The possibility to generate frequency anticorrelated

photons with pulsed lasers without the need for filtering is of particular interest in

order to obtain high-visibility interference in experiments when the timing informa-

tion provided by the pump is crucial. This type of frequency correlations exhibit

high visibility in a Hong-Ou-Mandel interferometer.116 The increase in the singles

bandwidth to ∼ 90 nm results in theoretical temporal correlations of the entangled

photons of ∼ 12 fs.122 Furthermore, the entropy of entanglement is boosted as well,

as it is a function of the ratio of the bandwidth of the downconverted photons to

the bandwidth of the pump.122,123

The third row of Fig. 4.6 depicts the case of frequency uncorrelated photons

S (ωs, ωi) = Ss(ωs)Si(ωi) that was obtained for ξ = −20o. We performed the

Schmidt decomposition of the state given by Eq. (4.4) that showed the entropy of

entanglement to be nearly 0.124 Therefore, the frequency uncorrelation observed in

Fig. 4.6 (e) is indeed a signature of the presence of a separable quantum state.

To quantify the degree of frequency uncorrelation of our two-photon state, we

fit the experimental data with a Gaussian function of the form exp(−aΩ2
s − bΩ2

i −
2cΩsΩi).

123 The ratio c2/(ab) describes its orientation and ellipticity, takes on values

between 0 and 1 that correspond to frequency-uncorrelated and maximally entan-

gled states, resp. The obtained value is c2/(ab) = 0.01 with an overlap of the fit

and the experimental data of 98.1 %. Fig. 4.6(e) and (f) show photons with dis-

tinguishable spectra. The last row of Fig. 4.6 depicts the direct measurement of

photons with frequency correlation. Unlike in work done by O. Kuzucu et al.,125

where the nonlinear crystal and the wavelength were chosen such as to generate

frequency correlated photons, here we obtain the frequency correlation by applying

a pulse-front tilt of ξ = −52o with no need for changing the material, neither the

wavelength.

4.3.1 Conclusion

Pulses with pulse-front tilt are an important and enabling tool in nonlinear optics,

such as in broadband frequency conversion126,127 and soliton phenomena in second

order nonlinear media.128,129 We have shown experimentally that the use of PFT

technique allows us tailoring the bandwidth and frequency correlations of entan-

gled photons. The transition from frequency anticorrelated to correlated photons

is clearly seen from the experimental data. As cases of particular interest, we have

shown the first direct measurement of the joint spectra in which frequency cor-
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related photons, and anticorrelated photons were generated using ultrafast pump.

We have also demonstrated the generation of frequency uncorrelated photons. In

the case of anticorrelated photons, the bandwidth, and thus the entropy of entan-

glement, were increased resulting in theoretically extremely short temporal corre-

lations. The results reported here are of valuable interest, as the used technique

works independently of the wavelength and the nonlinear crystal, and therefore it

can be implemented in materials and at wavelengths where conventional solutions

do not hold.

PFT techniques can also be used in other configurations. In noncollinear SPDC

the group velocity can be tailored too, now with the noncollinear emission an-

gle playing the role of the Poynting-vector walk-off angle. The recently demon-

strated generation of paired photons in electromagnetically induced transparency

schemes130 can also benefit from the use of tilted pulses to enhance the control of

the frequency correlations of the paired photons, as well as to increase the tuning

range of the coherence time of the generated photons.
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Classical computers rely on the combination of a fixed hardware and a flexible

software. The operation performed on the data register is fully determined by the

information stored in the program register and can be altered at will by the user. It is

intriguing to attempt to generalize this concept to quantum computing.30 Imagine

a fixed universal quantum processing unit where the transformation of the data

qubits is specified by the quantum state of program qubits. In a seminal paper77

Nielsen and Chuang proved that an n qubit quantum register can perfectly encode

at most 2n distinct quantum operations. Since already unitary transformations on

a single qubit form the SU(2) group with uncountably many elements, this bound

seems to severely limit the universality of programmable quantum gates.

5.1 Quantum gates operation

Although perfect universal programmability is ruled out, it is nevertheless possible

to construct approximate programmable quantum gates and optimize their perfor-

mance for a given size of the program register.78–83 Two complementary approaches

to this problem were pursued in the literature. One option is to design gates that

operate deterministically, i.e. always provide an output, but add some noise to the

output state.83 An alternative strategy avoids the extra noise at a cost of reduced

success probability.77–79 The gate then involves a measurement whose outcome her-

alds its success or failure. If restricted to successful cases, the gate operates perfectly

and noiselessly.

31
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A very important elementary programmable quantum gate was proposed by

Vidal, Masanes and Cirac (VMC).78 They considered programmable rotation of a

single qubit along the z axis of the Bloch sphere,

U(φ) = |0〉〈0|+ eiφ|1〉〈1|. (5.1)

Here |0〉 and |1〉 denote the computational basis states of the qubit. In the simplest

version of VMC protocol, the phase shift φ is encoded into a state of single-qubit

program register,

|φ〉P =
1√
2

(|0〉+ eiφ|1〉). (5.2)

A C-NOT gate is applied to the data qubit |ψ〉D = α|0〉 + β|1〉 and the program

qubit |φ〉P . This is followed by measurement on the program qubit in the computa-

tional basis. The measurement outcome |0〉 indicates successful application of U(φ)

onto the data qubit while the outcome |1〉 means that the operation U(−φ) has

been applied. This scheme thus exhibits a success probability of 50 % which is the

maximum possible with a single qubit program register. By adding further program

qubits, the probability of success can be made arbitrary close to unity. Note that

an exact specification of the phase shift φ would require infinitely many classical

bits. A striking feature of the programmable quantum gate is that the information

on φ is faithfully encoded into a single quantum bit.

5.2 Quantum gate implementation

While the theory of programmable quantum gates is well established, little attention

has been paid to their experimental realizations. The single-qubit programmable

quantum measurement devices,84–93 where the state of program qubit determines the

measurement on data qubit, were implemented for single-photons94 and for nuclear

spins in an NMR experiment.95 Also programmable discriminator of coherent states

has been reported.96,97 However, to our knowledge, there was no demonstration of a

programmable unitary quantum gate for photonic qubits, so we have closed this gap

between theory and experiment. Specifically, we have implemented the elementary

single-qubit programmable gate proposed by VMC.78

Our optical implementation is based on the encoding of qubits into polarization

states of single photons. We exploit two-photon interference on a polarizing beam

splitter (PBS). Consider the input states of data and program photons,

|ψ〉D = α|H〉+ β|V 〉, |φ〉P =
1√
2

(|H〉+ eiφ|V 〉), (5.3)
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where |H〉 and |V 〉 denote the horizontal and vertical linear polarization states,

respectively. Suppose that the PBS totally transmits horizontally polarized photons

and reflects vertically polarized photons. If we restrict ourselves to the cases when

a single photon emerges in each output port of the PBS,131–133 then the conditional

two-photon output state reads

1√
2

(α|H〉D|H〉P + βeiφ|V 〉D|V 〉P ). (5.4)

If the program qubit is measured in the diagonal linear polarization basis |±〉 =
1√
2
(|H〉± |V 〉) then the data qubit is prepared according to the measurement result

in the state

|ψout〉D = α|H〉 ± βeiφ|V 〉. (5.5)

If the measurement outcome is |+〉 then the unitary transformation U(φ) has been

applied to the data photon. If the outcome is |−〉 then the state acquires an extra

relative π phase shift in the H/V basis. This can be compensated by a fast elec-

trooptical modulator that applies a relative phase shift 0 or π depending on the

measurement outcome.134,135 With the active feed-forward the scheme achieves the

success probability 50 %. This saturates the bound on the achievable success proba-

bility78 so this linear optical scheme is optimal. In the experiment we implemented

passive version of the scheme without feed-forward. We post-select only the events

when the program qubit is projected onto state |+〉 which reduces the theoretical

success probability of the protocol to 25 %.

5.3 Experimental setup

The experimental setup is shown in Fig. 5.1. The initial pump beam from continuous-

wave laser (CUBE 405 C, Coherent) with the wavelength of 407 nm is focused to

6 mm thick non-linear crystal LiIO3 cut for type I spontaneous parametric frequency

degenerate down-conversion (SPDC). After filtering out the scattered pump light

by cut-off filters the down-converted photon pairs with wavelength of 814 nm are

coupled (C) into single-mode optical fibers (SMF) acting as spatial filters. The

photons are prepared in horizontal polarization state at the fibers outputs by fiber

polarization controllers (PC). To achieve maximal polarization purity two linear film

polarizers (P) are employed. The required polarization states of both the data and

program photons are set in the preparation stage by properly rotated wave plates

(λ
2
, λ

4
). The data and program photons interfere on the polarizing beam splitter
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Figure 5.1: Scheme of the experimental setup. The correlated photons generated

in the process of spontaneous parametric down-conversion (SPDC) serve as the

program and data qubit. After being prepared in proper polarization states the

photons interfere on the polarizing beam splitter (PBS). The detection stage con-

sists of polarization analysis, single-photon detectors (D), coincidence logics and

counting module (C&C). For polarization setting and analysis the fiber polariza-

tion controllers (PC), half-wave plates (λ
2
), quarter-wave plates (λ

4
), polarizers (P),

Glan polarizer (GP), and polarization beam splitter (PBSM) are used. See text for

details.

(PBS, Ekspla) and enter the detection stage. The data photon passes through a

sequence of a quarter-wave plate, a half-wave plate, and another polarizing beam

splitter PBSM which allows to measure the photon in an arbitrary polarization ba-

sis. The program photon is projected onto the diagonal linearly polarized state |+〉
by a half-wave plate and a calcite Glan polarizer (GP). At the outputs the photons

are detected by fiber-coupled single-photon avalanche photodiodes (SPCM-AQ4C,

Perkin Elmer). Detection events registered by the detectors D1, D2, and D3 are

processed by coincidence logic (TAC/SCA, Ortec) and fed into a counting module

(Ortec).
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Figure 5.2: The measured HOM dip visibility of correlated photon pairs on PBSM

without linear film polarizers (�), with linear film polarizer placed in front of APD

D1 (•) and with linear film polarizers placed in front of APDs D1 and D2 (N).

The error bars correspond to one standard deviation and are computed from the

measured data.

5.4 Spatial mode functions overlap on the PBS

To verify the overlap of photons’ spatial mode functions on the PBS we measure

the visibility of Hong-Ou-Mandel (HOM) dip9 in the data output port. The data

and program photons are prepared in horizontal and vertical polarization states,

respectively, so that they both propagate to the data output. The wave plates in

the data detection stage are set to transform the H/V linear polarizations onto

the diagonal ones. The HOM dip in coincidences between clicks of detectors D1

and D2 is measured as a function of the time delay between the program and data

photons introduced by a motorized translation of one of the fiber coupling systems.

The measured HOM dip visibility is above 89 %, limited mainly by imperfections

of PBSM. Particularly, if we insert two linear film polarizers in front of APDs D1

and D2 the visibility exceeds 99.5 %, see Fig. 5.2. This indicates nearly perfect

spatial overlap of the data and program photons on PBS. The linear film polarizer

placed before detector D2 is removed in further measurements and used in the state
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preparation stage to ensure preparation of pure input state.

5.5 Measurement

The success of the gate is heralded by a coincidence detection of a single photon

in each output port. In the experiment, we therefore measure the coincidence

rates C13 between detectors D1 and D3 and C23 between detectors D2 and D3.

The width of the coincidence window is set to 2 ns. For a given phase shift φ

we characterize the performance of the programmable gate by a tomographically

complete measurement. We set the state of the program photon to 1√
2
(|H〉+eiφ|V 〉).

We then subsequently prepare the data photon in six different states |H〉, |V 〉, |+〉,
|−〉, |R〉 and |L〉, where |R〉 = 1√

2
(|H〉 + i|V 〉) and |L〉 = 1√

2
(|H〉 − i|V 〉) denote

the right and left circularly polarized states, respectively. For each input we carry

out measurements for six different settings of the wave plates in the data detection

stage chosen such that the click of D1 heralds projection of the data photon onto

the state |H〉, |V 〉, |+〉, |−〉, |R〉, and |L〉 by turns. Every particular measurement

takes 5 s and is repeated 10 times to gain statistics. Average twofold coincidence

rate is about 1300 s−1. The polarizer placed in front of the detector D1 guarantees

nearly ideal projection onto a pure polarization state. Therefore, the presented

results were obtained using only C13 coincidence data. Note that in this way we do

not need to precisely calibrate the relative detection efficiencies of D1 and D2. We

have confirmed that the results remain largely unchanged if we use the coincidences

C23 instead or if we process all data simultaneously. However, the results obtained

from C23 exhibit slightly higher noise due to imperfect polarization filtering by the

polarizing beam splitter PBSM. The process and state fidelities determined using

coincidences C23 are about 1 % lower than the fidelities obtained from coincidences

C13.

5.6 Data analysis

From the experimental data we reconstruct the completely positive (CP) map that

fully characterizes the transformation of the data photon for a fixed state of the

program photon. We have performed the quantum process tomography for eight

different phase shifts φ = k
4
π, k = 0, 1, ..., 7. According to the Jamiolkowski-Choi

isomorphism,136,137 every CP map can be represented by a positive semidefinite op-
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erator χ on the tensor product of the input and output Hilbert spaces Hin and Hout.

In our case both Hin and Hout are two-dimensional Hilbert spaces of polarization

state of a single photon hence χ is a 4×4 matrix. The input state ρin transforms ac-

cording to the formula ρout = Trin[(ρTin⊗1out)χ], where T denotes transposition in a

fixed basis. Due to the slight imperfections of the PBS, the implemented operation

is not exactly unitary and may involve some polarization filtering. We therefore do

not impose the constraint that χ has to be trace-preserving but allow for general

trace-decreasing map.138,139 We use the iterative maximum-likelihood estimation

algorithm that is described in detail elsewhere.140,141 This nonlinear statistical re-

construction method yields a quantum process χ that is most likely to produce the

observed experimental data.142,143

Fig. 5.3 displays the real and imaginary parts of the reconstructed CP map χ for

four different phase shifts φ = k π
2
, k = 0, 1, 2, 3. We quantify the gate performance

by the process fidelity defined as follows,

Fχ =
Tr[χχid(φ)]

Tr[χ]Tr[χid(φ)]
. (5.6)

Here χid(φ) is a process matrix representing the unitary operation U(φ) (5.1),

χid(φ) = 1⊗ U(φ)|Φ+〉〈Φ+|1⊗ U †(φ), (5.7)

where |Φ+〉 = |H〉|H〉+|V 〉|V 〉 denotes the maximally entangled Bell state. Thus χid

is effectively a density matrix of a pure maximally entangled state onHin⊗Hout. The

process fidelity determined from the reconstructed CP maps is plotted in Fig. 5.4

as a function of the phase shift φ. We can see that the fidelity is almost constant

and exceeds 95 % for all values of φ which demonstrates very good functionality of

the programmable gate.

A careful analysis of the reconstructed CP maps reveals that the polarizing

beam splitter PBS imposes certain non-zero relative phase shift δφ between the

vertical and horizontal polarizations. The active area of the PBS where splitting

of the vertical and horizontal polarization components occurs is made of a stack of

thin dielectric films. In principle, each of the polarization and spatial modes passing

through the PBS can acquire a different phase shift. However, only a single effective

combination of such phase shifts is relevant in our experiment and gives rise to the

phase offset δφ.

We estimate the phase offset as follows. For each value of the encoded phase

shift φ we determine the effective applied phase shift φeff by maximizing the overlap

Tr[χχid(φeff)] over φeff . The dependence of φeff on φ is plotted in Fig. 5.5.
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Figure 5.3: Reconstructed process matrix χ. Real (left column) and imaginary

(right column) parts of the reconstructed CP map χ are shown for four different

values of the programmed phase shift φ encoded in the state of program photon.

From the best linear fit to the data we obtain δφ = −0.265 rad. This phase offset

could be passively compensated e.g. by means of additional wave-plates that would

apply the relative phase shift −δφ to the output data photon. We have carried
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Figure 5.4: Quantum process fidelity of the programmable gate is plotted as a

function of the encoded phase shift φ. The fidelities before (•) and after (N) com-

pensation of the constant phase offset δφ are shown. The dashed line represents the

best constant fit to the compensated fidelity data with the value of 97.1 %.

out the software compensation and corrected the reconstructed CP maps for the

fixed phase offset. This calibration procedure increases the process fidelity by about

1 % as shown in Fig. 5.4. All the compensated fidelity data are within one percent

around the average value of 97.1 %. The achievable gate fidelity is mainly limited by

the imperfections of the polarizing beam splitter PBS that does not totally reflect

(transmit) the V (H) polarization. The measured splitting ratios read 98 : 2 and

0.5 : 99.5 for horizontal and vertical polarizations, respectively. A simple theoretical

model predicts average process fidelity 97.7 % which is in a very good agreement

with the experimental results.

Besides the quantum processes we have also reconstructed the single-qubit out-

put state for each input state. We have evaluated the state fidelity F = 〈ψout|ρ|ψout〉
between the expected pure output state and the reconstructed (generally mixed)

state ρ. For each phase shift φ we average the state fidelity over the six different

input states to obtain the average state fidelity Favg. We find that Favg lies in the

interval 96.6 % − 97.8 %. The compensation of the phase offset δφ increases the

average state fidelity by almost 1 % to the range 97.6 %− 98.5 %. This further con-

firms that the programmable gate operates with very high fidelity for all values of

the phase shift φ in the interval [0, 2π].

The average state fidelity Favg and the process fidelity Fχ exhibit almost perfect

linear dependence of the form Favg = 0.727Fχ + 0.275. This is consistent with
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Figure 5.5: Dependence of the effectively applied phase shift φeff on the programmed

phase shift φ. The circles represent results obtained from 8 reconstructed CP maps,

the dashed line is the best linear fit to the data.

the theoretically predicted relation between these two fidelities for deterministic

processes,144 Favg = 1
3
(2Fχ+ 1). The observed discrepancy is mainly due to the fact

that we perform independent maximum likelihood reconstructions of the quantum

process and output states while the theoretical formula assumes that the output

states are calculated from the input states using the process matrix χ. Also, the

reconstructed CP map is not exactly trace preserving.

5.7 Other application of the realized quantum gate

We next show that our device can also function as a programmable partial po-

larization filter.81 For this purpose we prepare the program qubit in various linear

polarization states cos θ|H〉+sin θ|V 〉. Repeating the calculation leading to Eq. (5.5)

we find the (non-normalized) output state of the data qubit to be

|ψout〉T = α cos θ|H〉+ β sin θ|V 〉. (5.8)

The amplitude of vertical polarization is attenuated (or amplified) by a factor

of tan θ with respect to amplitude of the horizontal polarization. We carry out the

complete quantum process tomography of the programmable quantum filter for nine

different values of θ = n
16
π, n = 0, 1, ..., 8. The process fidelity can be calculated

according to Eq. (5.6) where the ideal filtering operation is now described by a

partially entangled state, χid,filter(θ) = (cos θ|H〉|H〉 + sin θ|V 〉|V 〉)(〈H|〈H| cos θ +
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Figure 5.6: Quantum process fidelity of the programmable partial polarization filter

is plotted as a function of the filtering angle θ. The fidelities before (•) and after (N)

compensation of the constant phase offset δφ are shown. The dashed line represents

the best constant fit to the compensated fidelity data with the value of 97.4%.

〈V |〈V | sin θ). The experimentally determined process fidelity is plotted in Fig. 5.6.

Similarly as for the programmable unitary gate, the compensation of the constant

phase offset δφ increases the fidelity. The improvement is most significant for θ =

π/4 while for complete filtering (θ = 0 and θ = π/2) the phase shift is irrelevant

and its compensation does not change the fidelity.

5.8 Conclusion

The programmable single-qubit phase gate working on single-photon polarization-

encoded qubits has been proposed and experimentally developed. The gate oper-

ation has been thoroughly tested by complete quantum process tomography. The

comparison of the reconstructed processes and the corresponding theoretical ones

yields high process fidelity of about 97 % with negligible dependence on the encoded

phase shift. It was demonstrated that with a different set of program states, the

device can also operate as a programmable partial polarization filter. The imple-

mented programmable gates can serve as building blocks of more complex multi-

qubit linear-optics quantum gates or other optical quantum information processing

devices.
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Chapter 6

Optimal two-copy discrimination

of quantum measurements

Two non-orthogonal quantum states cannot be perfectly distinguished. This funda-

mental constraint has important practical consequences as it for instance guarantees

the security of certain quantum key distribution protocols. Even if perfect discrimi-

nation is ruled out, one can nevertheless try to perform this task in an approximate

manner. Various strategies for optimal approximate discrimination of quantum

states have been studied since the seminal work of Holevo145 and Helstrom.146 The

rapid development of quantum information theory during recent years stimulated

investigation of discrimination of more complex quantum objects, namely quantum

operations, channels, and measurements.147–157 The role of entanglement in discrim-

ination of quantum operations and channels has been studied in some detail158–163

and experimental realizations of several discrimination schemes for quantum opera-

tions have been reported.164,165 Very recently, quantum combs have been established

as a general framework for treating the problems of discrimination and cloning of

quantum operations.166,167

Although formally the discrimination of quantum states and operations may look

quite similar at first glance, there are important differences due to the richer inher-

ent structure of quantum operations. For instance, any two different unitary oper-

ations U and V can be perfectly and deterministically discriminated provided that

a sufficient finite number of applications of the operation is accessible.148 Similarly,

perfect discrimination between two different projective quantum measurements is

possible with finite number of uses of the measuring apparatus.152 In contrast, two

non-orthogonal quantum states cannot be perfectly deterministically discriminated

from an arbitrary finite number of copies.

43
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In the present chapter, we shall investigate in detail various strategies for dis-

crimination among two quantum measurements.152–154 We shall assume that we are

given a measuring apparatus M that performs one of two single-qubit projective

measurements A or B. Our goal is to determine as well as possible whether M = A

or M = B for a given fixed finite number of allowed utilizations of the measuring

apparatus M . In particular, we shall focus on the scenario where the measurement

M can be performed twice. We will refer to this scenario as two-copy discrimination

of quantum measurements. We will assume that no further auxiliary measurements

could be performed on some ancilla states, so the identity of the measurement has

to be determined solely from the two outcomes of M . Already within this setting

there exist several different discrimination strategies of varying complexity and per-

formance. We will show that adaptive discrimination, entangled probe states, and

feed-forward all help to enhance the probability of correct identification of the mea-

surement. By combining entangled probes and feed-forward, perfect deterministic

discrimination of projective measurements is possible provided that their distance

is sufficiently large.152 Here we explicitly derive the entangled probe state and feed-

forward operation that enable perfect two-copy discrimination for a large class of

pairs of single-qubit measurements. We also show a successful proof-of-principle

experimental realization of the studied discrimination strategies.

6.1 Discrimination strategies

Throughout the chapter, the two single-qubit projective measurements that should

be discriminated will be labeled by letters A and B. The two possible measurement

outcomes will be denoted as 0 and 1, respectively. Without loss of any generality

we can choose the two projective measurements in the following form,

ΠA,0 = |0〉〈0|, ΠB,0 = |θ〉〈θ|,
ΠA,1 = |1〉〈1|, ΠB,1 = |θ⊥〉〈θ⊥|, (6.1)

where

|θ〉 = cos θ|0〉+ sin θ|1〉, |θ⊥〉 = sin θ|0〉 − cos θ|1〉. (6.2)

The angle θ ∈ [0, π/2] parameterizes the overlap O between the two measurements

that can be naturally defined as

O = Tr[ΠA,0ΠB,0] = Tr[ΠA,1ΠB,1] = cos2 θ. (6.3)
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Figure 6.1: Discrimination of single-qubit quantum measurements with single-qubit

probe states. In the considered scenario the measurement M can be performed

twice. (a) Discrimination using two fixed probe states |ψI〉 and |ψII〉. (b) Adaptive

discrimination strategy where the second probe state |ψII〉 is chosen according to

the result of the first measurement x. Time flows from the left to the right. Single

lines indicate quantum bits, double lines classical bits.

We shall assume that the a-priori probability of each measurement is 1
2

and

that no other auxiliary measurements could be performed. Although interesting

phenomena arise mainly when several uses of the measurement are allowed, let us

for the sake of completeness first consider the situation when the measurement can

be performed only once. A single-qubit probe state |ψ〉 is sent to the measuring

apparatus and if the measurement outcome reads 0 (1) then we guess that the mea-

surement A (B) was performed. The probability of correct guess Psucc is maximized

if |ψ〉 is chosen as the eigenstate corresponding to the largest eigenvalue of operator

ΠA,0 + ΠB,1. We obtain

|ψ〉 =
1√

2(1− sin θ)
(cos θ|0〉+ (sin θ − 1)|1〉) , (6.4)

and

Psucc =
1

2
(1 + sin θ). (6.5)

Let us now assume that the measurement can be performed twice. In this

case we can distinguish four different discrimination strategies, as illustrated in

Figs. 6.1 and 6.2. The most straightforward approach is the probing by two fixed

single-qubit states, see Fig. 6.1(a). The measurement is then inferred from the two

measurement results x, y ∈ {0, 1}. The discrimination strategy is formally described
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Figure 6.2: (a) Discrimination of quantum measurements using entangled probe

state |Ψ〉. (b) Feed-forward enhanced discrimination of quantum measurements. A

unitary operation U depending on the measurement outcome x on the first part of

the entangled state is applied to the second part of the entangled state prior to the

measurement.

by a function f(x, y) that assigns an estimate A or B to each of the four possible

pairs of outcomes 00, 01, 10, 11. There are altogether 24 = 16 such functions and

when determining the optimal discrimination strategy, we must optimize over all

those 16 alternatives.

The strategy shown in Fig. 6.1(a) can be improved by using an adaptive scheme,

where the second single-qubit probe state |ψII〉 becomes dependent on the outcome

x of the measurement on the first probe state |ψI〉, cf. Fig. 6.1(b). There are thus

two different second probe states |ψII,0〉 and |ψII,1〉 that can be optimized indepen-

dently. As we shall show below, this adaptive procedure increases the probability

of successful guess of the correct measurement.

So far we have considered probing by single-qubit states. A more general strat-

egy, however, could explore an entangled two-qubit state as a probe, as illustrated

in Fig. 6.2(a). Moreover, we can combine the entanglement with feed-forward and

after performing the measurement on the first qubit of the entangled state we can

apply to the second qubit a unitary operation U(x) that depends on the outcome of

the first measurement.152 This most advanced discrimination strategy is depicted

in Fig. 6.2(b). This latter approach allows for perfect deterministic two-copy dis-

crimination provided that θ ≥ π
4
.
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6.2 Probing with separable states

Let us first concentrate on the probing with two pure fixed single-qubit states as

shown in Fig. 6.1(a). We choose as a figure of merit that should be maximized the

probability of successful guess of the measurement,

Psucc =
1

2

1∑

x=0

1∑

y=0

Tr[ψIΠf(x,y),x]Tr[ψIIΠf(x,y),y]. (6.6)

Here ψj = |ψj〉〈ψj| is a short-hand notation for a density matrix of a pure state.

Because of convexity, the pure probe states are always optimal as can be directly

seen from the structure of the formula (6.6). For a fixed ψI and f(x, y) the optimal

ψII can be determined as the eigenstate of the operator

R =
1

2

1∑

x=0

1∑

y=0

Tr[ψIΠf(x,y),x]Πf(x,y),y (6.7)

that corresponds to the maximum eigenvalue rmax of R. Maximizing rmax over all 16

functions f(x, y) and over all probe states ψI then yields Psucc. We have performed

this optimization numerically and found that the optimal f(x, y) is asymmetric,

guess A is made for three outcomes and guess B is made only for one outcome,

f(0, 0) = A, f(0, 1) = A, f(1, 0) = A, f(1, 1) = B. (6.8)

Moreover, the optimal ψI and ψII lie in the same plane of the Bloch sphere as the

projectors (6.1), which is intuitively plausible. We can thus write

|ψI〉 = cosφI |0〉+ sinφI |1〉,
|ψII〉 = cosφII|0〉+ sinφII|1〉. (6.9)

Assuming the form (6.9) of ψI and the guessing prescription (6.8), the whole op-

timization can be performed analytically. After some algebra one arrives at the

expression for the optimal angle φI ,

φI =
1

2

(
θ − arccos

[
1

4 cos θ

(
1−
√

1 + 8 cos2 θ
)])

. (6.10)

The corresponding success probability reads

Psucc,sep =
1

2
+

tan θ

8
√

2

√
1 + 2 cos(2θ) +

√
5 + 4 cos(2θ)

+
sin θ

4
√

2

√
2 + cos(2θ) +

√
5 + 4 cos(2θ).

(6.11)
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Furthermore, it holds that it is optimal to set φII = φI, hence the two optimal probe

states ψI and ψII are in fact identical.

Let us now move to the second scenario, where the second probe state ψII is

chosen according to the result x of the first measurement. The success probability

of this protocol can be expressed as

Psucc =
1

2

1∑

x=0

1∑

y=0

Tr[ψIΠf(x,y),x]Tr[ψII,xΠf(x,y),y]. (6.12)

For each f(x, y) and ψI the two probe states ψII,0 and ψII,1 have to be optimized

independently. They can be determined as eigenstates corresponding to maximum

eigenvalues rmax,0 and rmax,1 of operators

R0 =
1∑

y=0

Tr[ψIΠf(0,y),0]Πf(0,y),y,

R1 =
1∑

y=0

Tr[ψIΠf(1,y),1]Πf(1,y),y. (6.13)

The optimal discrimination strategy can be determined by maximizing rmax,0+rmax,1

over all f(x, y) and ψI. Numerical maximization reveals that, again, optimal ψ all

lie in the same plane as projectors (6.1) and are thus of the form (6.9). The optimal

function f(x, y) is now symmetric,

f(0, 0) = A, f(0, 1) = B, f(1, 0) = A, f(1, 1) = B. (6.14)

The optimization of the angles φI, φII,0 and φII,1 can be again performed fully

analytically and we obtain

φI =
π

4
+
θ

2
. (6.15)

The explicit formulas for the angles φII,0 and φII,1 are rather unwieldy and are not

reproduced here. Instead, we plot the dependence of the optimal φj on θ in Fig. 6.3.

Note that generally φII,0 6= φII,1 which is a signature of the adaptive discrimination

strategy. The maximum achievable probability of success reads

Psucc,ad =
1

2

(
1 +
√

1− cos4 θ
)
. (6.16)

It can be explicitly checked that for all θ ∈ (0, π/2) it holds that Psucc,ad > Psucc,sep so

the adaptive strategy strictly outperforms the strategy where the probe single-qubit

states are a-priori fixed.
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Figure 6.3: The angles φj parameterizing optimal probe single-qubit states are

plotted in dependence on θ. Shown are the optimal angles for adaptive strategy φI

(blue solid line), φII,0 (blue dotted line), and φII,1 (blue dashed line). Also shown

is the optimal angle φ = φI = φII for strategy with fixed input probe states (red

dot-dashed line).

6.3 Probing with entangled states

We now switch our attention to protocols exploiting entangled two-qubit probe

states. The first such scheme is shown in Fig. 6.2(a). Here a measurement is per-

formed on each qubit of a fixed two-qubit probe state |Ψ〉. The success probability

of this protocol can be written as

Psucc =
1

2

1∑

x=0

1∑

y=0

Tr[ΨΠf(x,y),x ⊗ Πf(x,y),y]. (6.17)

This can be rewritten as Psucc = Tr[ΨRent] where

Rent =
1

2

1∑

x=0

1∑

y=0

Πf(x,y),x ⊗ Πf(x,y),y. (6.18)

The maximum achievable success probability can be thus determined by calculating

the maximum eigenvalue rent,max of Rent for all sixteen functions f(x, y) and taking

the maximum value. Since R is a 4× 4 matrix, this optimization can be performed

fully analytically.

It turns out that two different guessing strategies are optimal depending on the

value of θ. For θ ≤ θth = arccos 1√
3

the optimal function f reads

f(0, 0) = A, f(0, 1) = B, f(1, 0) = B, f(1, 1) = A. (6.19)
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The optimal (unnormalized) probe state has the form

|Ψ〉 = cos(2θ)[|11〉 − |00〉] + (1− sin(2θ))[|01〉+ |10〉], (6.20)

and the success probability reads

Psucc,ent =
1

2
[1 + sin(2θ)]. (6.21)

For θ ≥ θth the symmetry is broken and the optimal f(x, y) is given by

f(0, 0) = A, f(0, 1) = B, f(1, 0) = A, f(1, 1) = A. (6.22)

The corresponding optimal probe state can be expressed as

|Ψ〉 = |00〉 − |11〉+ tan θ|10〉

− cos θ
√

3 + cos(2θ)√
2 + sin θ

√
3 + cos(2θ)

|01〉, (6.23)

and yields a success probability

Psucc,ent =
1

2

(
1 +
√

1− cos4 θ
)
, (6.24)

which coincides with Psucc achievable by adaptive strategy with single-qubit probes.

The most advanced among the studied strategies employs entanglement and

feed-forward, as illustrated in Fig. 6.2(b). A measurement is performed on one part

of the entangled two-qubit state and the measurement outcome x determines the

unitary operation performed on the second qubit before it is measured.152 The two

measurement results are then used to identify the measurement device as A or B

according to a function f(x, y). Without any loss of generality we can assume that

for x = 0 the operation on the second qubit is an identity transformation while for

x = 1 a unitary operation U is applied to the qubit. The success rate of the scheme

can be expressed as

Psucc =
1

2

1∑

y=0

Tr[ΨΠf(0,y),0 ⊗ Πf(0,y),y]

+
1

2

1∑

y=0

Tr[ΨΠf(1,y),1 ⊗ U †Πf(1,y),yU ]. (6.25)

In order to determine the maximum achievable Psucc we have to calculate the max-

imum eigenvalue rff,max of the operator

Rff =
1

2

1∑

y=0

(
Πf(0,y),0 ⊗ Πf(0,y),y + Πf(1,y),1 ⊗ U †Πf(1,y),yU

)
, (6.26)
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and further maximize rff,max over all single-qubit unitary operations U . A thorough

numerical optimization reveals that for θ < π
4

the feed-forward does not provide

any advantage and it is optimal to use the entangled state (6.20) without any

feed-forward which leads to the success probability (6.21). The situation, however,

changes dramatically for θ > π
4
. If θ ∈ [π

4
, π

2
] then the two measurements can be

perfectly and deterministically discriminated from two utilizations. The optimal

f(x, y) is given by Eq. (6.19). An analytical expression for the required entangled

probe state can be derived,

|Ψ〉 = α|00〉+ β|10〉+ γ|11〉, (6.27)

where

α =
1√
2

√

1−
√

1− 1

tan2 θ
,

γ = − 1√
2 tan θ

√

1 +

√
1− 1

tan2 θ
,

β = − α

tan θ
− γ tan θ. (6.28)

The conditional unitary operation U on the second qubit that should be applied if

the outcome of the first measurement reads 1 is defined as follows,

U |0〉 =
1√

β2 + γ2
(γ|0〉+ β|1〉),

U |1〉 =
1√

β2 + γ2
(−β|0〉+ γ|1〉). (6.29)

The obtained results are illustrated in Fig. 6.4 that shows the dependence of

Psucc on θ for the four studied discrimination strategies. We can see that adaptive

strategy, entanglement and feed-forward all help to increase the success probability

of the discrimination. For θ < θth the strategy based on a fixed entangled probe

outperforms the adaptive strategy with single-qubit probe states. Interestingly, in

the interval θ ∈ [π
4
, θth] the success probability of strategy involving fixed entangled

probe decreases with increasing θ, c.f. dashed green line in Fig. 6.4. This somewhat

surprising feature arises because the class of discrimination strategies with fixed

entangled probes represents only a subset of all possible strategies. By restricting

ourselves to this class of strategies we impose certain constraints which in this

particular case give rise to the non-monotonicity of Psucc,ent. If we employ a more
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Figure 6.4: Dependence of the success probability of the measurement discrimi-

nation Psucc on the angle θ is plotted for four different discrimination strategies:

probing with fixed separable states (solid red line), adaptive strategy employing

separable states (dot-dashed blue line), probing with entangled state (dashed green

line), and combination of entangled probe state and a feed-forward (dotted black

line).

general discrimination strategy combining entangled probe and feed-forward then we

recover the intuitively expected monotonic dependence of Psucc on θ. Moreover, with

this latter method the two quantum measurements can be perfectly deterministically

discriminated152 when θ ≥ π
4
.

6.4 Experiment

In order to test the above developed discrimination strategies, we have experimen-

tally implemented discrimination of projective measurements on a polarization state

of a single photon. In the experiment, the alternative A corresponds to the mea-

surement in the basis of horizontally/vertically polarized single-photon states, (|H〉,
|V 〉), while the alternative B represents a measurement in the basis of linearly polar-

ized states rotated by angle θ with respect to the H/V basis, (cos θ|H〉 + sin θ|V 〉,



53

Figure 6.5: Experimental setup. The scheme consists of a nonlinear crystal where

pairs of photons are generated in the process of spontaneous parametric down

conversion (PDC), single-mode fibers (SMF), fiber polarization controllers (PC),

fiber in/out couplers (C), bulk polarizers (P), half-wave plates (HW, λ/2), polariz-

ing beam splitters (PBS), single-photon detectors (D), and coincidence electronics

(C&C). The half-wave plate HW5 was inserted in the setup only for measurements

with entangled probe states.

sin θ|H〉 − cos θ|V 〉). As shown in Fig. 6.5, the measurement block consists of a

half-wave plate (λ
2
) whose rotation angle defines the measurement basis, polarizing

beam splitter (PBS), two polarizers (P) and two avalanche photodiodes serving as

single-photon detectors (D). The polarizers in front of the detectors filter out any

possible remaining undesired signal that could be present due to imperfections of the

PBS. Similarly as in Ref.,165 we make use of spatial multiplexing, where two physical

copies of the measuring apparatus are available. Note that this is merely a technical

simplification of the experiment and all the developed discrimination strategies can

be implemented also with only a single apparatus by using time multiplexing and

delay lines.

In our experiment, pairs of temporally correlated horizontally polarized photons

are generated in the process of frequency degenerate Type-I non-collinear parametric

downconversion in a LiIO3 crystal pumped by a cw laser diode emitting 40 mW of

power at the wavelength of 407 nm.? The downconverted signal and idler photons
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at wavelength 814 nm are spatially filtered by coupling them into single mode fibers.

After release into free space, the polarization states of the photons can be set and

controlled by polarizers P and half-wave plates HW1 and HW2. The photons then

impinge onto a polarizing beam splitter PBSC and propagate through additional

half-wave plates HW3, HW4 (and, optionally, HW5) before impinging onto the

two detection blocks. The central polarizing beam splitter PBSC together with

the wave plates provide sufficient flexibility necessary for the implementation of

the various discrimination strategies including those which require preparation of

specific entangled states.

We begin by implementation of the strategy employing two equally polarized

single-photon probes. The wave plates HW1 and HW2 are set to 0◦ such that

both signal and idler photons are horizontally polarized and are fully transmitted

through PBSC . The half-wave plates HW3 and HW4 are rotated such as to prepare

both photons in pure linear polarization state |ψ〉 = cosφI|H〉+sinφI|V 〉, where the

angle φI is given by Eq. (6.10). The photons are then detected by the measurement

blocks and the coincidences between clicks of one detector from each block are

recorded. Following Eq. (6.8), if the coincidences D0&D2, D0&D3, or D1&D2 are

observed then we guess that the apparatus performs measurement in the H/V basis

(device A), while if the coincidence D1&D3 is recorded then we conclude that the

apparatus performs measurement in the rotated basis (device B). We measure the

coincidences for both basis settings and from the experimental data we calculate

the success probability of a correct guess assuming that the a-priori probability of

each measurement device A or B was 1
2
.

We then proceed to the adaptive discrimination strategy. In the present proof-

of-principle experiment, we were not able to realize real-time adaptive measurement

strategy, but we nevertheless successfully emulated this approach as follows. For

both devices A and B (i.e. both basis settings) we perform two measurements.

First, the signal photon is prepared by HW3 in a linearly polarized state at angle

φI = π
4

+ θ
2
, cf. Eq. (6.15), the idler photon is prepared by HW4 in a linearly

polarized state cosφII,0|H〉 + sinφII,0|V 〉, and the four coincidences are measured.

The second measurement is almost identical to the first one except that the idler

photon is prepared in a state cosφII,1|H〉 + sinφII,1|V 〉. From the first (second)

measurement we take into account only coincidences D0&D2 and D0&D3 (D1&D2

and D1&D3). The success probabilities are then calculated from this combined

experimental data and according to the identification pattern (6.14).

The entanglement-based strategies are much more experimentally demanding
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because the two photons have to be prepared in an entangled state whose quality

depends on the visibility of two-photon interference on PBSC . First we address the

simpler strategy without feed-forward. The probe state (6.20) is actually maximally

entangled and can be rewritten as,

|Ψ〉 = |H〉[(cos θ − sin θ)|V 〉 − (cos θ + sin θ)|H〉]
+|V 〉[(cos θ + sin θ)|V 〉+ (cos θ − sin θ)|H〉].

(6.30)

We rotate HW1 and HW2 by 22.5◦ to prepare both signal and idler photons in front

of PBSC in diagonally polarized state 1√
2
(|H〉 + |V 〉). The two-photon state right

at the output of PBSC conditional on a single photon propagating in each arm is

maximally entangled and reads 1√
2
(|HH〉 + |V V 〉). This state can be transformed

into the desired state (6.30) by rotating the wave plates HW3 and HW4. In order

to compensate for an unwanted π phase shift we also insert an additional half-wave

plate HW5 into the setup. We measure coincidences for both measurement bases

and determine the probability of successful discrimination from the acquired data.

Finally, we test the strategy involving entangled states and feed-forward. Since

a fast feed-forward loop was not at our disposal we have decided to emulate this

strategy similarly as in the case of adaptive strategy. We have determined setting of

the wave plates HW1–HW5 which yields the partially entangled two-photon probe

state (6.27). For a given fixed θ we measure coincidences for both measurement

bases and then we rotate half-wave plate HW4 such that this operation is equivalent

to the feed-forward transformation U , cf. Eq. (6.29). We repeat all measurements

for this altered configuration. From the first set of data we extract coincidences

D0&D2 and D0&D3 and from the second set of data we use coincidences D1&D2

and D1&D3. This yields the same data as a true feed-forward scheme where the

rotation of the wave plate HW4 is performed only when detector D1 clicks and

before the idler photon passes through HW4.

The experimentally determined success probabilities for all four strategies are

shown in Fig. 6.6. The results agree very well with the theoretical predictions. The

statistical error of the measured Psucc is below 2× 10−3. The error bars are smaller

than the sizes of the symbols used in the graph and are thus not plotted. As pre-

dicted, the adaptive scheme outperforms the scheme with fixed single-qubit probe

states, and the use of entangled states further significantly improves the probability

of successful discrimination. We can see that for θ > θth ≈ 54.7◦ the entangled state
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Figure 6.6: Experimental results. Experimentally determined probability of success-

ful discrimination Psucc is plotted for four different discrimination strategies: strat-

egy with fixed single-qubit probes (◦), adaptive strategy with single qubit probes

(M), strategy employing two-qubit entangled state (6.30) (�, measurements made

for 0◦ ≤ θ ≤ 60◦) and strategy combining entanglement and feed-forward (�, mea-

surements made for 50◦ ≤ θ ≤ 85◦). The thin grey lines show the corresponding

theoretical curves. The inset shows details around θ = 55◦.

(6.20) ceases to be optimal as expected. The discrepancy between theory and exper-

iment is larger for entanglement-based strategies than for strategies with separable

probes, because the performance of the former is affected by less-than unit visibility

of two-photon interference on PBSC (we measure V = 0.98) and the imperfections

of PBSC . Nevertheless, the strategy combining entanglement and feed-forward con-

sistently achieves success probability ≈ 99 % for θ ∈ (50◦, 85◦). In particular, for

θ = 55◦ the advantage of using the entanglement and feed-forward is clearly visible

from the experimental results, cf. inset in Fig. 6.6. As θ approaches 90◦ the strate-

gies involving separable probe states eventually outperform the entanglement-based

strategy because they are much less affected by the technical imperfections.
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6.5 Conclusions

In this chapter we have studied the discrimination between two projective single-

qubit quantum measurements. We have seen that if two applications of the mea-

surement are possible, then there exist several different discrimination strategies of

varying complexity and performance. We have found that adaptive strategy, en-

tanglement and feed-forward all help to increase the success probability of the dis-

crimination. We have explicitly determined an entangled probe state that, together

with feed-forward, enables perfect deterministic two-copy discrimination of the two

measurements for π
4
≤ θ ≤ π

2
. This is analogous to the perfect finite-copy distin-

guishability of unitary transformations and general quantum operations.148,152,157

We have successfully experimentally confirmed the performance of the investigated

protocols using a linear optical scheme where the task was to discriminate between

two different measurements on a polarization state of single photon.

The discrimination scenarios considered in this chapter did not involve any other

ancilla measurements in addition to the measurement M that should be discrimi-

nated. If we allow for such additional ancilla measurements then we can in principle

construct even more sophisticated discrimination schemes that can be described by

the formalism of quantum combs.166,167 Investigation of such advanced strategies

as well as strategies involving inconclusive outcomes153 is left for future work.
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Chapter 7

Conclusions and outlook

One of the goals of quantum optics is to design and implement new sources of quan-

tum light, which could enable tunable control of the relevant photonic properties

as required by the specific quantum information applications under consideration.

To date most quantum information applications use the polarization of photons,

or polarization entanglement between paired photons, as the quantum resource. In

this thesis we have presented research in the field of preparation of different cor-

related photon pairs via SPDC and their use in quantum information processing

experiments.

In chapter 4, we have proposed and experimentally verified source of entangled

photon pairs with tunable frequency correlations. We have used pulse front tilt tech-

nique to control the type of frequency correlations and the bandwidth of entangled

photon pairs generated by spontaneous parametric downconversion in a nonlinear

crystal pumped by femtosecond laser pulses. The technique allows us to produce

frequency correlations, anticorrelations or nocorrelations at will. The essence of the

pulse front tilt technique is to modify effective group velocities and effective group

velocity dispersions of all the interacting fields (for example by a diffraction grating)

inside the nonlinear medium. We have applied direct and indirect measurement of

frequency correlations to characterize different regimes of frequency generation from

single nonlinear crystal. An additional advantage of the pulse front tilt technique

is that it can be used in any nonlinear material and at frequency bandwidths where

standard solutions cannot be applied.

Chapter 5 is dedicated to experimental realization of a programmable quantum

phase gate. This simple quantum processor applies a unitary phase shift operation

to the data qubit with the value of the phase shift being fully determined by the

59
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state of the program qubit. The experimental setup employed linear optical imple-

mentation based on encoding of qubits into polarization states of single photons,

two-photon interference on a polarizing beam splitter, and measurement on the

output program qubit. We have characterized the programmable quantum gate by

full quantum process tomography. We have also demonstrated that with a differ-

ent set of program states, the device can also operate as a programmable partial

polarization filter. This simple quantum gate can serve as a basic building block

of more complex multiqubit linear-optics quantum gates or other optical quantum

information processing devices.

Finally, in chapter 6, we have proposed optimal two-copy discrimination between

two projective quantum measurements on a single qubit. We have considered dis-

crimination scenarios where the measurement that should be identified can be per-

formed only twice and did not involve any other ancilla measurements in addition to

the measurement that should be discriminated. We have showed that adaptive dis-

crimination strategy, entangled probe states, and feed-forward all help to increase

the probability of correct identification of the measurement. With use of linear

optics we have successfully experimentally demonstrated all the presented discrim-

ination strategies. The employed experimental setup involves projective measure-

ments on polarization states of single photons and preparation of required probe

two-photon polarization states by the process of spontaneous parametric down-

conversion and passive linear optics.

In regard to our ongoing and planned activities, we are currently working on

the Toffoli gate, which is a three qubit entangling gate that flips the logical state

of the target qubit conditionally on the logical state of the two control qubits. Our

optical implementation is based on the encoding of qubits into polarization and

spatial degrees of freedom of single photons. We are using inherently phase stable

Mach-Zehnder interferometer for encoding the spatial degree of freedom. Another

ongoing project focuses on losses suppression in optical quantum communication

using combination of noiseless amplification and reversible losses. The optical im-

plementation is based on realized programmable quantum phase gate and beam

splitter with variable beam splitting ratio for both polarization modes.



Stručné shrnut́ı v češtině

Ćılem disertačńı práce je prezentace vědeckých výsledk̊u na poli generace korelo-

vaných pár̊u foton̊u źıskaných pomoćı spontánńı parametrické frekvenčńı sestupné

konverze a jejich využit́ı v experimentálńım kvantovém zpracováńı informace.

V prvńı části disertačńı práce se věnujeme př́ıpravě r̊uzných typ̊u frekvenčńıch

korelaćı kvantově provázaných fotonových pár̊u generovaných pomoćı spontánńı

parametrické frekvenčńı sestupné konverze. Experimentálně zde demonstrujeme

úplnou kontrolu frekvenčńıch korelaćı kvantově provázaných pár̊u foton̊u pomoćı

metody nakloněńı čela pulzu. Metoda je založena na správném nastaveńı grupových

rychlost́ı všech interaguj́ıćıch vln v nelineárńım prostřed́ı. K tomuto účelu se využ́ıvaj́ı

svazky ovlivněné prostřed́ım s úhlovou disperźı, jako je např́ıklad difrakčńı mř́ıžka.

Nelineárńı prostřed́ı je čerpané pomoćı femtosekundových pulz̊u přičemž neńı potřeba

použ́ıt žádné úzkopásmové frekvenčńı filtry. Byla implementována dvě experi-

mentálńı uspořádáńı, jedno pro př́ımé a druhé pro nepř́ımé měřeńı frekvenčńıch

korelaćı, přičemž oba experimenty jasně prokazuj́ı flexibilitu a univerzalitu této tech-

niky. Nejprve demonstrujeme generaci frekvenčńıch antikorelaćı kvantově provázaných

pár̊u foton̊u. Dále ukazujeme, jak lze generovat frekvenčně korelované kvantově

provázané páry foton̊u, které mohou naj́ıt uplatněńı např́ıklad v kvantové metrologii.

Posledńım speciálńım př́ıpadem je generace frekvenčně zcela nekorelovaných pár̊u

foton̊u. Je potřeba zd̊uraznit, že experimentálně demonstrované typy frekvenčńıch

korelaćı jsou jen speciálńı př́ıpady všech korelaćı a š́ı̌rek spektra, které lze s touto

metodou dosáhnout. Metoda, kterou použ́ıváme, je nezávislá na vlnové délce a ne-

lineárńım prostřed́ı, proto může být využita i tam, kde jiné řešeńı neńı k dispozici.

V daľśı části práce se zabýváme experimentálńı demonstraćı programovatelného

jednoqubitového kvantového fázového hradla. Tento kvantový procesor aplikuje

unitárńı operaci fázového posuvu na datový qubit, přičemž tato operace je plně

zakódována do stavu programového qubitu. Experimentálńı realizace jednoqubitového

fázového hradla je založena na kódováńı qubit̊u do polarizačńıch stav̊u jednotlivých
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foton̊u, dvoufotonové interferenci na polarizačńım děliči svazku a následném měřeńı

výstupńıho programového qubitu. Programovatelné jednoqubitové fázové hradlo

jsme charakterizovali pomoćı úplné tomografie kvantového procesu. Dále jsme

ukázali, že změnou programových stav̊u lze zař́ızeńı využ́ıt jako programovatelný

částečný polarizačńı filtr.

V závěrečné části práce se věnujeme optimálńı diskriminaci mezi dvěma pro-

jekčńımi kvantovými měřeńımi na jednom qubitu. Uvažujeme př́ıpad, kdy měřeńı,

které má být identifikováno, může být provedeno pouze dvakrát. Studované dis-

kriminačńı strategie experimentálně demonstrujeme a testujeme jejich úspěšnost.

Experiment využ́ıvá spontánńı parametrickou sestupnou frekvenčńı konverzi pro

př́ıpravu požadovaných testovaćıch dvoufotonových polarizačńıch stav̊u, pasivńı

lineárńı optiku a projekčńı měřeńı do polarizačńıch stav̊u jednotlivých foton̊u. Ukazu-

jeme zde, že adaptivńı diskriminačńı strategie, kvantově provázané testovaćı stavy

a zpětná vazba mohou zvýšit pravděpodobnost správné identifikace projekčńıho

měřeńı.
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Two-Photon Coincident-Frequency Entanglement via Extended Phase Match-

ing, Phys. Rev. Lett. 94, 083601 (2005).
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[127] A. Dubietis, G. Valiulis, G. Tamošauskas, R. Danielius, and A. Piskarskas,

Nonlinear second-harmonic pulse compression with tilted pulses, Opt. Lett. 22,

1071 (1997).

[128] P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and

A. Piskarskas, Observation of temporal solitons in second-harmonic generation

with tilted pulses, Phys. Rev. Lett. 81, 570 (1998).

[129] X. Liu, L. J. Qian, and F. W. Wise, Generation of optical spatiotemporal

solitons, Phys. Rev. Lett. 82, 4631 (1999).



80 BIBLIOGRAPHY

[130] V. Balic, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, Generation

of paired photons with controllable waveforms, Phys. Rev. Lett. 94, 183601

(2005).

[131] T. B. Pittman, B. C. Jacobs, and J. D. Franson, Probabilistic quantum logic

operations using polarizing beam splitters, Phys. Rev. A 64, 062311 (2001).

[132] T. B. Pittman, B. C. Jacobs, and J. D. Franson, Demonstration of Nonde-

terministic Quantum Logic Operations Using Linear Optical Elements, Phys.

Rev. Lett. 88, 257902 (2002).

[133] T. B. Pittman, M. J. Fitch, B. C Jacobs, and J. D. Franson, Experimental

programled-NOT logic gate for single photons in the coincidence basis, Phys.

Rev. A 68, 032316 (2003).

[134] F. Sciarrino, M. Ricci, F. De Martini, R. Filip, and L. Mǐsta Jr., Experimental
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