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Some motivation, if needed...
single-photon and entangled-photon sources needed in

• all-optical quantum information processing

• metrology, for building luminosity standards

QIP with linear optics still needs highly nonlinear elements such as single-
photon sources and detectors!
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U(N) Enhancing single-photon efficiency by post-
selection does not work!
Neither does enhancing the detection efficiency
by post-selection.
⇒ Better sources and detectors are needed!

D.W. Berry, S. Scheel, B.C. Sanders, and P.L. Knight, Phys. Rev. A 69, 031806(R) (2004);
D.W. Berry, S. Scheel, C.R. Myers, B.C. Sanders, P.L. Knight, and R. Laflamme, New J.
Phys. 6, 93 (2004); P. Kok, IEEE: Sel. Top. Quantum Electron. 9, 1498 (2003).
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• metrology, for building luminosity standards

QIP with linear optics still needs highly nonlinear elements such as single-
photon sources and detectors!

ρ1

ρ2

ρ3

ρ4

5ρ

ρ

U(N) Enhancing single-photon efficiency by post-
selection does not work!
Neither does enhancing the detection efficiency
by post-selection.
⇒ Better sources and detectors are needed!
How well can single-photon sources be made?

D.W. Berry, S. Scheel, B.C. Sanders, and P.L. Knight, Phys. Rev. A 69, 031806(R) (2004);
D.W. Berry, S. Scheel, C.R. Myers, B.C. Sanders, P.L. Knight, and R. Laflamme, New J.
Phys. 6, 93 (2004); P. Kok, IEEE: Sel. Top. Quantum Electron. 9, 1498 (2003).
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Causality and unavoidable decoherence

Causality in macroscopic electrodynamics: Kramers–Kronig relations

εI(ω) =
1

π
P

∞∫
−∞

dω′
εR(ω′)− 1

ω′ − ω
≡ ε(ω)− 1 =

1

iπ
[ε(ω)− 1] ∗ P

1

ω

(Kramers–Kronig relations also exist for nonlinear susceptibilities!)
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Causality and unavoidable decoherence

Causality in macroscopic electrodynamics: Kramers–Kronig relations

εI(ω) =
1

π
P

∞∫
−∞

dω′
εR(ω′)− 1

ω′ − ω
≡ ε(ω)− 1 =

1

iπ
[ε(ω)− 1] ∗ P

1

ω

(Kramers–Kronig relations also exist for nonlinear susceptibilities!)

Immediate consequences from causality requirements:

• effective Lagrangians such as Heisenberg–Euler are complex

• trapping capability of atoms and ions related to loss rate

• lower bounds on absorption probability of beam splitters

ability to manipulate ⇐⇒ decoherence

S. Scheel, quant-ph/0508189.



Single-photon sources
QED in linear dielectrics
Nonlinear noise polarization

QED in linear dielectrics — a reminder

Physical situation: dielectric material whose polarization responds linearly and
locally to the electric field

PL(r, t) = ε0

∞∫
0

dτ χ(r, τ)E(r, t− τ) + P(N)
L (r, t)

noise polarization P(N)
L (r, t) is there to satisfy fluctuation-dissipation theorem

Helmholtz equation for e.m. field without external sources gets a source term!

∇×∇× E(r, ω)−
ω2

c2
ε(r, ω)E(r, ω) =

ω2

ε0c2
P(N)

L (r, ω)

Unique solution to the Helmholtz equation:

E(r, ω) =
ω2

ε0c2

∫
d3sG(r, s, ω)P(N)

L (s, ω)

G(r, s, ω): dyadic Green function of the associated classical scattering problem
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QED in linear dielectrics — a reminder
Quantization is performed by introducing dynamical variables f̂(r, ω) as

P̂(N)
L (r, ω) = i

√
~ε0

π
εI(r, ω)̂f(r, ω)

with bosonic commutation rules
[̂
f(r, ω), f̂ †(r′, ω′)

]
= δ(ω − ω′)δ(r− r′)I.

The Hamiltonian generating Maxwell’s equations is bilinear:

ĤL =

∫
d3r

∞∫
0

dω ~ω f̂ †(r, ω)̂f(r, ω)

The electromagnetic field operators then read

Ê(r, ω) = i

√
~

ε0π

ω2

c2

∫
d3s

√
εI(r, ω)G(r, s, ω) f̂(s, ω), Ê(r) =

∞∫
0

dωÊ(r, ω)+h.c.

D̂L(r, ω) = ε0ε(r, ω)Ê(r, ω) + P̂(N)
L (r, ω), D̂L(r) =

∞∫
0

dωD̂L(r, ω) + h.c.
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Nonlinear (cubic) Hamiltonian

Two ways to approach nonlinear interaction:

• microscopic theory with anharmonic oscillators

• macroscopic ansatz for Hamiltonian

ĤNL =
∫

d1 d2 d3αijk(1, 2, 3)̂f †i (1)̂fj(2)̂fk(3) + h.c. k ≡ (rk, ωk)

most general normal-ordered form of the nonlinear interaction energy corre-
sponding to a χ(2) medium

Observation #1: Faraday’s law

∇× Ê(r) = − ˙̂B(r) = −
1

i~
[
B̂(r), ĤL + ĤNL

]
⇒

[
B̂(r), ĤNL

]
= 0

But electric field and magnetic induction are pure electromagnetic fields
without knowledge of the interaction. Therefore, their functional form is as
in the linear theory!
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Derivation of the nonlinear polarization

Observation #2: Ampere’s law, keep only terms linear in αijk

∇×∇× Ê(r) = −µ0
¨̂DL(r) −µ0

¨̂PNL(r)
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∇×∇× Ê(r) = −µ0
¨̂DL(r) −µ0

¨̂PNL(r)
⇓

0 = +
µ0

~2

[[
D̂L(r), ĤNL
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Derivation of the nonlinear polarization

Observation #2: Ampere’s law, keep only terms linear in αijk

∇×∇× Ê(r) = −µ0
¨̂DL(r) −µ0

¨̂PNL(r)
⇓

0 = +
µ0

~2

[[
D̂L(r), ĤNL

]
, ĤL

]
+

µ0

~2

[[
P̂NL(r), ĤL

]
, ĤL

]
Particular solution:

[
D̂L(r), ĤNL

]
= −

[
P̂NL(r), ĤL

]
General solution includes commutants with ĤL which are functionals of the
number density operator f̂ †(r, ω)̂f(r, ω).

• Linear functionals of this type are included in particular solution.

• Higher-order functionals have to be excluded for consistency with the
approximation that P̂NL(r) stays bilinear in the dynamical variables.
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Derivation of the nonlinear polarization

Solve formally for nonlinear polarization:

P̂NL(r) = −
1

i~
L−1

L

[
D̂L(r), ĤNL

]
Liouvillian LL generated by Hamiltonian ĤL: LL• = 1/(i~)[•, ĤL]

By decomposition of the linear displacement into its reactive and noise parts,
we can identify the noise contribution to the nonlinear polarization:

P̂(N)
NL (r) = −

1

i~
L−1

L

[
P̂(N)

L (r), ĤNL

]
P̂(N)

NL (r) vanishes if εI(r, ω)→ 0, i.e. if there is no noise!

Inversion of the Liouvillian:

P̂NL(r) =
i

~
lim
s→0

∞∫
0

dτ e−sτe−
i

~ĤLτ
[
D̂L(r), ĤNL

]
e

i

~ĤLτ



Single-photon sources
QED in linear dielectrics
Nonlinear noise polarization

Classical nonlinear polarization

Definition of the nonlinear polarization within framework of response theory:

PNL,l(r, t) = ε0

t∫
−∞

dτ1dτ2 χ(2)
lmn(r, t− τ1, t− τ2)Em(r, τ1)En(r, τ2) + P (N)

NL,l(r, t)

We have to match this expression to what we have derived before!
In that way we find functional relation χ(2)

lmn ↔ αijk.
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Classical nonlinear polarization

Definition of the nonlinear polarization within framework of response theory:

PNL,l(r, t) = ε0

t∫
−∞

dτ1dτ2 χ(2)
lmn(r, t− τ1, t− τ2)Em(r, τ1)En(r, τ2) + P (N)

NL,l(r, t)

We have to match this expression to what we have derived before!
In that way we find functional relation χ(2)

lmn ↔ αijk.

Slowly-varying amplitude approximation: only three relevant field amplitudes
with mid-frequencies Ω1 = Ω2 + Ω3,Ω2,Ω3, taken out of the integral at t:

P̃ (++)
NL,l (r,Ω1) = ε0χ

(2)
lmn(r,Ω2,Ω3)Ẽm(r,Ω2)Ẽn(r,Ω3) + P̃ (N,++)

NL,l (r,Ω1)

Now insert expression for electric field in terms of Green function G(r, s, ω)
and dynamical variables f̂(r, ω) and compare...
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Comparison with classical polarization

find solution to integral equation∫
d3s

√
εI(s,Ω1)αmjk(s,Ω1, s2,Ω2, s3,Ω3)Glm(r, s,Ω1) =

~2

iπc2

√
π

~ε0

Ω2
2Ω

2
3

Ω1ε(r,Ω1)

√
εI(s2,Ω2)εI(s3,Ω3)χ

(2)
lmn(r,Ω2,Ω3)Gmj(r, s2,Ω2)Gnk(r, s3,Ω3)

Fredholm integral equation is solved by inverting the integral kernel
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Comparison with classical polarization

find solution to integral equation∫
d3s

√
εI(s,Ω1)αmjk(s,Ω1, s2,Ω2, s3,Ω3)Glm(r, s,Ω1) =

~2

iπc2

√
π

~ε0

Ω2
2Ω

2
3

Ω1ε(r,Ω1)

√
εI(s2,Ω2)εI(s3,Ω3)χ

(2)
lmn(r,Ω2,Ω3)Gmj(r, s2,Ω2)Gnk(r, s3,Ω3)

Fredholm integral equation is solved by inverting the integral kernel

Helmholtz operator: Hij(r, ω) = ∂r
i ∂

r
j − δij∆r − (ω2/c2)ε(r, ω)δij

inverts Green function: Hij(r, ω)Gjk(r, s, ω) = δikδ(r− s)

αijk(r,Ω1, s2,Ω2, s3,Ω3) = ~2

iπc2

√
π

~ε0

Ω2
2Ω

2
3

Ω1ε(r,Ω1)

√
εI(s2,Ω2)εI(s3,Ω3)

εI(r,Ω1)

×Hli(r,Ω1)
[
χ(2)

imn(r,Ω2,Ω3)Gmj(r, s2,Ω2)Gnk(r, s3,Ω3)
]

functional relation between nonlinear coupling αijk in the nonlinear Hamilto-

nian ĤNL and measurable nonlinear susceptibility χ(2)
lmn
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Summary and outlook

• macroscopic quantum theory for χ(2) interactions that includes absorption
and dispersion

• gives a cubic Hamiltonian with a nonlinear coupling constant that can be
related to the nonlinear susceptibility

• can treat inhomogeneous situations easily because all geometrical infor-
mation is contained in Green functions

• theory leads to a nonlinear noise polarization that has hitherto been
ignored

• application to entangled-light generation, limits to fidelity

• extension to Kerr nonlinearities (rather trivial)

S. Scheel and D.-G. Welsch, quant-ph/0508122.


