Minimal tomography and its applications

J. Rehacek, Z. Hradil

Department of Optics, Palacky University Olomouc, Czech Republic

B.-G. Englert and D. Kaszlikowski Department of Physics, NUS, Singapore

Outline

Minimal tomography

- What is minimal (symmetric) tomography?
- Possible realizations
- Performance
- Applications
 - Cryptography
 - Vortex beams

Tomography

Complete characterization of a quantum source in dimension d

density matrix: d^2-1 independent parameters

measurement: d^2-1 independent probabilities

• Example:

state of a qubit is determined by three independent probabilities

Ellipsometry

• Spin 1/2 particle, polarization ...

$$\rho = \frac{1}{2}\hat{I} + \frac{1}{2}\vec{s}\cdot\vec{\hat{\sigma}}$$

Standard ellipsometry setup

Ellipsometry ...

$$s_x = 3 \langle \Pi_{x\uparrow} \rangle - 3 \langle \Pi_{x\downarrow} \rangle, \dots$$

 This is a six-element POVM → overdetermined problem

Minimal tomography

Minimal

 d^2 channels in dimension d (this is 4 channels for qubits)

• Symmetric $\operatorname{Tr} \{\Pi_i \Pi_j\} = \operatorname{const}, \forall i \neq j$

Noiseless

POVM elements are subnormalized projectors

$$\Pi_{j} = \frac{1}{d} |\phi_{j}\rangle \langle \phi_{j}|, \quad |\langle \phi_{j}|\phi_{j}\rangle|^{2} = \frac{1}{d+1}$$

Construction

 Minimal POVM provides a global minimum of the functional

$$S = \sum_{j,k} |\langle \phi_j | \phi_k \rangle|^4 \ge \frac{2d^3}{d+1}$$

- Minimization is done over d^2 vectors $\ket{\phi_j}$
- Alternatively, POVMs can be obtained from a vector $|\phi\rangle$ via

$$|\phi_{dj+k}\rangle = D_{jk}|\phi\rangle, \quad D_{jk} = \sum_{m=0}^{d-1} e^{\frac{2\pi i}{d}j(m+k/2)} |(k+m) \mod d\rangle \langle m|$$

J.M. Renes et al. Phys. Rev. A

Qubits

• Dimension d=2

$$\Pi_{1} = \frac{1}{4} + \frac{1}{4\sqrt{3}}(\sigma_{x} + \sigma_{y} + \sigma_{z})$$
$$\Pi_{2} = \frac{1}{4} + \frac{1}{4\sqrt{3}}(\sigma_{x} - \sigma_{y} - \sigma_{z})$$
$$\Pi_{3} = \frac{1}{4} + \frac{1}{4\sqrt{3}}(-\sigma_{x} + \sigma_{y} - \sigma_{z})$$
$$\Pi_{4} = \frac{1}{4} + \frac{1}{4\sqrt{3}}(-\sigma_{x} - \sigma_{y} + \sigma_{z})$$

Tetrahedron geometry

Optical implementation

• ½ of intensity goes through the upper arm; the rest is equally distribute among σ_x , σ_y and σ_z channels

Optical implementation...

Equivalent computation network

 $00 \to \Pi_1, \ 01 \to \Pi_2, \dots$ $\sin(2\alpha) = (\sqrt{3} - 1)/3, \ \tan(2\beta) = \sqrt{3} + 1$

some other schemes

Clarke et al., PRA 64, 012303 (2001) Decker, Janzing, and Beth , Int J. Quantum Inf. 2, 353 (2004) Rehacek, Englert, and Kaszlikowski, PRA 70, 052321 (2004)

Performance

Assymptotic efficiency (pure states)

• parallel strategy

$$1 - \langle F \rangle \approx \frac{1}{N}$$

• antiparallel strategy

$$1 - \langle F \rangle \approx \frac{1}{2N}$$

Simple self-learning protocol

Step 1

N/2 particles are measured $\rightarrow \rho(N/2)$

Step 2

second half of the ensemble is used for reconstructing the state [antiparallel strategy with respect to $\rho(N/2)$]

$$1 - \langle F \rangle \approx \frac{2}{N} \approx 2 \left(1 - \frac{N+2}{N+3} \right)$$

Quantum cryptography

 Minimal POVM on singlet states yields strong correlations

 $I_{AB} = \log_2(16/12)$ bits ≈ 0.415 bits

 Alice and Bob can fully characterize the source — tomographic QKD protocol

Singapore protocol

two-way (public) communication

Alice \longrightarrow Bob: 1,3 Bob \longrightarrow Alice: (B,D)=1; (A,C)=0 (at random) shared secret bit "0" is generated

Alice → Bob: 7,9 Bob → Alice: sorry... A and D are recorded as parts of new sequences

Efficiency

1st iteration: probability of Bob's success: 2/3 letters used: 2, i.e. 1/3bits generated per qubit

 2nd iteration: probability of Bob's failure: 1/3 probability of Bob's success, next round: 2/3 letters used: 4, i.e. 1/18bits generated per qubit

• nth iteration:

$$\frac{2}{3} \left(1 - \frac{2}{3} \right)^{n-1} \left(\frac{1}{2} \right)^n = \frac{1}{3} \frac{1}{6^{n-1}}$$

asymptotical limit= 0.4 first three iterations: $(1/3+1/18+1/108) \approx 0.398$

Security analysis

• Eve is given the control of the source:

Eve's ancilla states are determined by ρ_{ab} . Which Eve's measurement maximizes I_{AE} ?

Security analysis ...

- white noise: $\rho_{ab} = (1 \epsilon) |\Psi_{sing}\rangle \langle \Psi_{sing}| + \frac{\epsilon}{4}\hat{1}$
- best thing Eve can do: $|\Psi\rangle = \sum_{ij} |E_{ij}\rangle_e |i\rangle_a |j\rangle_b$
- tomography: $\operatorname{Tr}_{e}\{|\Psi\rangle\langle\Psi|\} = \rho_{ab}$

$$\Rightarrow |E_{ij}\rangle = \sum_{k} c_{k}^{ij} |k\rangle_{e}, \quad C = \sqrt{\rho_{ab}}$$

- conditioned states: $\rho_{e}^{j} = \operatorname{Tr}_{ab}\{|\Psi\rangle\langle\Psi|\Pi_{a}^{j}\}$
- Minimal POVM pyramidal Eve's states

Optimization

Optimal Eve's measurement maximizes

$$I_{AE}(p_{ij}) = \sum_{ij} p_{ij} \log \frac{p_{ij}}{p_i p_j}, \quad p_{ij} = \operatorname{Tr}\{\rho_e^j \Pi_e^i\}$$

- concave functional with respect to Eve's measurement
- all maxima lie at the boundary of the convex set of all POVMs
- numerical search

Rehacek, Englert, and Kaszlikowski, PRA 71, 054303 (2005)

Results

security diagram

Englert et al., quant-ph/0412075

Results ...

• weak noise limit $\epsilon \rightarrow 0$: a von Neuman measurement is optimal

- strong noise limit $\epsilon \rightarrow 1$: optimal measurement has five channels
- efficiency (bit rate) of QKD with minimal tomography is significantly larger compared to the sixstate BB84 protocol for all $\epsilon < \epsilon_{\rm thr}$

Englert et al., quant-ph/0412075

Outlook: vortex beams

superposition of vortex beams with complex coefficients —> quantum state

POVM: $\rho \rightarrow$ transformation \rightarrow intensity scan

 spatial light modulators: effective implementation of quantum operations

recontruction: minimal state tomography

Bessel beams

- Generation: periodical azimuthal modulation $A(\varphi) = A_0 e^{im\varphi}$
- Interesting properties:
 - non-diffracting character
 - robust (self-reconstruction)
 - carry orbital momentum

Superposition of four vortices

Used weights

Reconstructed weights

Theoretical transversal distribution of intensity

tensity distribution

 Minimal symmetric tomography was introduced

Its properties were discussed

Its optical implementations were shown

Its applications in QKD were discussed