Classical and quantum inteterference 20.Oct. 2005, Palacký Univ., Olomouc, Czech Rep.

Neutron optical experiments exploring foundamental quantum-phenomena

Yuji HASEGAWA

Atominstitut der Österreichischen Universitäten, Wien, AUSTRIA PRESTO, Japan Science and Technology Agency, JAPAN

- 1. Neutron interferometer/polarimeter
- 2. Recent neutron optical experiments
- 2-1 Quantum contextuality
 - Violation of a Bell-like inequality
 - Kochen-Specker-like paradox
- 2-2 Quantum state tomography
- 2-3 Geometric phase
 - Non-cyclic spatial geometric phase
 - Geometric phase for mixed state
- 3. Summary

Neutron interferometry

Neutrons

 $m = 1.67 \times 10^{-27} \text{ kg}$ $s = \frac{1}{2}\hbar$ $\mu = -9.66 \times 10^{-27} \text{ J/T}$ $\tau = 887 \text{ s}$ R = 0.7 fm

u-d-d quark structure

2

Neutron interferometers

Larmor interferometry – neutron polarimeter

4

Classical and quantum inteterference 21. Oct. 2005, Palacký University, Olomouc, Czech Republic

Neutron optical experiments exploring foundamental quantum-phenomena

Yuji HASEGAWA

Atominstitut der Österreichischen Universitäten, Wien, AUSTRIA PRESTO, Japan Science and Technology Agency, JAPAN

- 1. Neutron interferometer/polarimeter
- 2. Recent neutron optical experiments
- 2-1 Quantum contextuality
 - Violation of a Bell-like inequality
 - Kochen-Specker-like paradox
- 2-2 Quantum state tomography
- 2-3 Geometric phase
 - Non-cyclic spatial geometric phase
 - Geometric phase for mixed state
- 3. Summary

From two-particle to two-space entanglement

Bell-like inequality with $E'(\alpha, \chi)$ $-2 \leq S' \leq 2$ with $S' = E'(\alpha_1, \gamma_1) - E'(\alpha_1, \gamma_2) + E'(\alpha_2, \gamma_1) + E'(\alpha_2, \gamma_2)$ where $E'(\alpha, \chi) = \frac{N'_{++}(\alpha, \chi) + N'_{--}(\alpha, \chi) - N'_{+-}(\alpha, \chi) - N'_{-+}(\alpha, \chi)}{N'_{++}(\alpha, \chi) + N'_{--}(\alpha, \chi) + N'_{+-}(\alpha, \chi) + N'_{-+}(\alpha, \chi)}$ $=\frac{N'_{++}(\alpha,\chi)+N'_{++}(\alpha+\pi,\chi+\pi)-N'_{++}(\alpha,\chi+\pi)-N'_{++}(\alpha+\pi,\chi)}{N'_{++}(\alpha,\chi)+N'_{++}(\alpha+\pi,\chi+\pi)+N'_{++}(\alpha,\chi+\pi)+N'_{++}(\alpha+\pi,\chi)}$ N'₊₊(α, γ) = $\langle \Psi | \hat{P}^{s}_{\alpha+1} \cdot \hat{P}^{p}_{\gamma+1} | \Psi \rangle$ Prediction by quantum theroy $N'_{++}(\alpha,\chi) = \frac{1}{2} \{1 + \cos(\alpha + \chi)\} \text{ as well as } E'(\alpha,\chi) = \cos(\alpha + \chi),$ then, $S' = 2\sqrt{2} = 2.82 > 2$ for $\begin{cases} \alpha_1 = \pi/2, \alpha_2 = 0 \\ \chi_1 = -\pi/4, \chi_2 = \pi/4 \end{cases}$ Remark: **Contrast!** $\overline{C} > 71\%$ УFШF 7

Contextuality in quantum mechanics

Non-contextuality:

Independent results: $v[\hat{A}^s \hat{B}^p] = v[\hat{A}^s] \cdot v[\hat{B}^p]$ for measurements of the commuting observables, $[\hat{A}^s, \hat{B}^p] = 0$.

→ Non-locality is one aspect of contextuality $([\hat{P}^{I(r_{I})}, \hat{P}^{II(r_{II})}] = 0$, since $\mathbf{r}_{I} \neq \mathbf{r}_{II}$)

In quantum muchanics:

Non-local correlations are expected

Schematic view of the experiment

Violation of a Bell-like inequality

Non-locality & contextuality

Statistical Violation $\underline{Bell State}$ $ \Psi\rangle = \frac{1}{\sqrt{2}} \langle a\rangle \otimes b\rangle + \bar{a}\rangle \otimes \bar{b}\rangle \rangle$ Bell's Inequality $ S \leq 2$, where $S \equiv E(a_1, b_1) + E(a_1, b_2) - E(a_2, b_1) + E(a_2, b_2)$ (1964)ContradictionGreenberger-Horne- Zeilinger (GHZ) State $ \Psi\rangle = \frac{1}{\sqrt{2}} \langle H\rangle_1 H\rangle_2 H\rangle_3 + V\rangle_1 V\rangle_2 V\rangle_3 \rangle$ $= \frac{1}{2} \langle R\rangle_1 L\rangle_2 H\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3$ $+ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3$ $+ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 L\rangle_2 V\rangle_3 \rangle$ Kochen-Specker(KS) Theorem $v[O] = \pm 1$ $\langle v[A] \cdot v[B] = +1$ $v[B] \cdot v[C] = \pm 1$ $v[C] \cdot v[A] = -1$		Non – Locality Correlated results for $\hat{A}(r_1) \& \hat{A}(r_2) (r_1 \neq r_2)$	Contextuality Correlated results for & B ([Â,B]=0)		
Contradiction $ \begin{array}{c} Greenberger-Horne-\\ Zeilinger (GHZ) State\\ \Psi\rangle = \frac{1}{\sqrt{2}} \{ H\rangle_1 H\rangle_2 H\rangle_3 + V\rangle_1 V\rangle_2 V\rangle_3 \\ = \frac{1}{\sqrt{2}} \{ R\rangle_1 L\rangle_2 H\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 L\rangle_2 H\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 L\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 L\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 L\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 L\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 L\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 L\rangle_2 H\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_3 \\ = \frac{1}{2} \{ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 R\rangle_2 V\rangle_$	Statistical Violation	$\frac{\text{Bell State}}{ \Psi\rangle = \frac{1}{\sqrt{2}} \{ \mathbf{a}\rangle \otimes \mathbf{b}\rangle + \bar{\mathbf{a}}\rangle \otimes \bar{\mathbf{b}}\rangle \}$ $\frac{\text{Bell's Inequality}}{ \mathbf{S} \leq 2, \text{ where } \mathbf{S} \equiv \mathbf{E}(\mathbf{a}_1, \mathbf{b}_1) + \mathbf{E}(\mathbf{a}_1, \mathbf{b}_2) - \mathbf{E}(\mathbf{a}_2, \mathbf{b}_1) + \mathbf{E}(\mathbf{a}_2, \mathbf{b}_2)}$ (1964) (2001)			
	Contradiction	Greenberger-Horne- Zeilinger (GHZ) State $ \Psi\rangle = \frac{1}{\sqrt{2}} \langle H\rangle_1 H\rangle_2 H\rangle_3 + V\rangle_1 V\rangle_2 V\rangle_3 \rangle$ $= \frac{1}{2} \langle R\rangle_1 L\rangle_2 H\rangle_3 + L\rangle_1 R\rangle_2 H\rangle_3$ $+ R\rangle_1 R\rangle_2 V\rangle_3 + L\rangle_1 L\rangle_2 V\rangle_3 \rangle$ (1990)	Kochen-Specker(KS) Theorem $v[O] = \pm 1$ $\begin{cases} v[A] \cdot v[B] = +1 \\ v[B] \cdot v[C] = \pm 1 \\ v[C] \cdot v[A] = -1 \end{cases}$ (1967)		

Theory (1)

Bell-state for spin & path entanglement

$$\begin{split} |\Psi\rangle &= \frac{1}{\sqrt{2}} \left\{ |\uparrow\rangle_{s} \otimes |I\rangle_{p} + |\downarrow\rangle_{s} \otimes |II\rangle_{p} \right\} \\ \text{Rem.:} \left\{ \begin{array}{l} \hat{X}_{1} \ \hat{X}_{2} \ |\Psi\rangle &= |\Psi\rangle \\ \hat{Y}_{1} \ \hat{Y}_{2} \ |\Psi\rangle &= |\Psi\rangle \\ \hat{X}_{1} \ \hat{Y}_{2} \ |\Psi\rangle &= -\hat{Y}_{1} \ \hat{X}_{2} \ |\Psi\rangle \end{split} \\ \begin{aligned} &= -\hat{Y}_{1} \ \hat{X}_{2} \ |\Psi\rangle \\ \text{Here,} \ \begin{bmatrix} \hat{X}_{1}, \hat{X}_{2} \end{bmatrix} = 0, \ \begin{bmatrix} \hat{Y}_{1}, \hat{Y}_{2} \end{bmatrix} = 0 \end{split} \\ \begin{aligned} &= 0 \end{aligned} \right\} \\ \begin{aligned} &= \frac{1}{\sqrt{2}} \left\{ \begin{array}{l} |\uparrow\rangle_{s} \otimes |I\rangle_{p} + |\downarrow\rangle_{s} \otimes |II\rangle_{p} \right\} \\ \begin{aligned} &= \frac{1}{\sqrt{2}} \left\{ \begin{array}{l} \hat{X}_{1} = \hat{\sigma}_{s}^{s} = \hat{A}^{s}(0) = (+1) \cdot \hat{P}_{(1+x)}^{s} + (-1) \cdot \hat{P}_{(1-x)}^{s} \\ \hat{X}_{2} = \hat{\sigma}_{s}^{p} = \hat{B}^{p}(0) = (+1) \cdot \hat{P}_{(1+y)}^{s} + (-1) \cdot \hat{P}_{(1-y)}^{s} \\ \hat{Y}_{2} = \hat{\sigma}_{y}^{p} = \hat{B}^{p}(\frac{\pi}{2}) = (+1) \cdot \hat{P}_{(1+y)}^{p} + (-1) \cdot \hat{P}_{(1-y)}^{p} \\ \hat{Y}_{2} = \hat{\sigma}_{y}^{p} = \hat{B}^{p}(\frac{\pi}{2}) = (+1) \cdot \hat{P}_{(1+y)}^{p} + (-1) \cdot \hat{P}_{(1-y)}^{p} \\ \hat{Y}_{2} = \hat{\sigma}_{y}^{p} = \hat{B}^{p}(\frac{\pi}{2}) = (-1) \cdot \hat{P}_{(1+y)}^{p} + (-1) \cdot \hat{P}_{(1-y)}^{p} \\ \hat{Y}_{2} = \hat{\sigma}_{y}^{p} = \hat{B}^{p}(\frac{\pi}{2}) = (-1) \cdot \hat{P}_{(1+y)}^{p} + (-1) \cdot \hat{P}_{(1-y)}^{p} \\ \hat{Y}_{3} = \hat{\sigma}_{y}^{p} = \hat{B}^{p}(\frac{\pi}{2}) = (-1) \cdot \hat{P}_{(1+y)}^{p} + (-1) \cdot \hat{P}_{(1-y)}^{p} \\ \hat{Y}_{3} = \hat{Y}_{3} = \hat{Y}_{3} = 0, \begin{bmatrix} \hat{Y}_{1}, \hat{Y}_{2} \end{bmatrix} = 0 \end{aligned}$$

Product Observables

$$\hat{\mathbf{C}} \equiv \hat{\mathbf{I}} + \hat{\mathbf{X}}_1 \, \hat{\mathbf{X}}_2 + \hat{\mathbf{Y}}_1 \, \hat{\mathbf{Y}}_2 - \hat{\mathbf{X}}_1 \, \hat{\mathbf{Y}}_2 \cdot \hat{\mathbf{Y}}_1 \, \hat{\mathbf{X}}_2$$

The following equality holds for these parameters $C = 1 + v [\hat{X}_1 \hat{X}_2] + v [\hat{Y}_1 \hat{Y}_2] - v [\hat{X}_1 \hat{Y}_2] \cdot v [\hat{Y}_1 \hat{X}_2]$ where $v [\hat{X}_j] = \pm 1$ & $v [\hat{Y}_j] = \pm 1$

 $[\hat{X}_{1}, \hat{Y}_{2}] = 0, [\hat{Y}_{1}, \hat{X}_{2}] = 0$

Theory (2)

Non-Contextuality Hidden Variable (NCHV) theory leads to

$$\begin{split} \mathbf{C}_{\mathrm{NCHV}} &= 1 + \nu \begin{bmatrix} \hat{\mathbf{X}}_1 \end{bmatrix} \cdot \nu \begin{bmatrix} \hat{\mathbf{X}}_2 \end{bmatrix} + \nu \begin{bmatrix} \hat{\mathbf{Y}}_1 \end{bmatrix} \cdot \nu \begin{bmatrix} \hat{\mathbf{Y}}_2 \end{bmatrix} \\ &- \nu \begin{bmatrix} \hat{\mathbf{X}}_1 \end{bmatrix} \cdot \nu \begin{bmatrix} \hat{\mathbf{Y}}_2 \end{bmatrix} \cdot \nu \begin{bmatrix} \hat{\mathbf{Y}}_1 \end{bmatrix} \cdot \nu \begin{bmatrix} \hat{\mathbf{X}}_2 \end{bmatrix} \\ &= \nu \begin{bmatrix} \hat{\mathbf{X}}_1 \end{bmatrix} \cdot \nu \begin{bmatrix} \hat{\mathbf{X}}_2 \end{bmatrix} \cdot (1 - \nu \begin{bmatrix} \hat{\mathbf{Y}}_1 \end{bmatrix} \cdot \nu \begin{bmatrix} \hat{\mathbf{Y}}_2 \end{bmatrix}) + (1 + \nu \begin{bmatrix} \hat{\mathbf{Y}}_1 \end{bmatrix} \cdot \nu \begin{bmatrix} \hat{\mathbf{Y}}_2 \end{bmatrix}) \end{split} \begin{matrix} \underline{\text{Quantum mechanics predicts}} \\ \mathbf{C}_{\mathrm{QM}} &= \langle \Psi | \left(\hat{\mathbf{I}} + \hat{\mathbf{X}}_1 \hat{\mathbf{X}}_2 + \hat{\mathbf{Y}}_1 \hat{\mathbf{Y}}_2 \\ &- \hat{\mathbf{X}}_1 \hat{\mathbf{Y}}_2 \cdot \hat{\mathbf{Y}}_1 \hat{\mathbf{X}}_2 \right) | \Psi] \end{split}$$

Then,

$$|C_{\text{NCHV}}| = |1 + \langle \hat{X}_1 \hat{X}_2 \rangle + \langle \hat{Y}_1 \hat{Y}_2 \rangle - \langle \hat{X}_1 \hat{Y}_2 \cdot \hat{Y}_1 \hat{X}_2 \rangle |$$

$$\leq 2 \iff \mathbf{C}_{\mathbf{QM}} = \mathbf{4}$$

Independent results for the commuting observables,

 $[\hat{X}_1, \hat{X}_2] = 0, [\hat{Y}_1, \hat{Y}_2] = 0, [\hat{X}_1, \hat{Y}_2] = 0, [\hat{Y}_1, \hat{X}_2] = 0$

$$\begin{split} \mathcal{Q}_{\text{QM}} &= \langle \Psi | \left(\mathbf{I} + X_1 X_2 + Y_1 Y_2 - \hat{X}_1 \hat{Y}_2 \cdot \hat{Y}_1 \hat{X}_2 \right) | \Psi \rangle \\ &= 1 + \langle \Psi | \hat{X}_1 \hat{X}_2 | \Psi \rangle \\ &= 1 + \langle \Psi | \hat{Y}_1 \hat{Y}_2 | \Psi \rangle \\ &- \langle \Psi | \hat{X}_1 \hat{Y}_1 \cdot \hat{Y}_2 \hat{X}_2 | \Psi \rangle \\ &= 1 + \langle \Psi | \hat{X}_1 \hat{X}_2 | \Psi \rangle \\ &+ \langle \Psi | \hat{Y}_1 \hat{Y}_2 | \Psi \rangle \\ &+ \langle \Psi | \hat{Z}_1 \hat{Z}_2 | \Psi \rangle \\ &= 4 \end{split}$$

Experimental setup

Results

Classical and quantum inteterference 21. Oct. 2005, Palacký University, Olomouc, Czech Republic

Neutron optical experiments exploring foundamental quantum-phenomena

Yuji HASEGAWA

Atominstitut der Österreichischen Universitäten, Wien, AUSTRIA PRESTO, Japan Science and Technology Agency, JAPAN

- 1. Neutron interferometer/polarimeter
- 2. Recent neutron optical experiments
- 2-1 Quantum contextuality
 - Violation of a Bell-like inequality
 - Kochen-Specker-like paradox
- 2-2 Quantum state tomography
- 2-3 Geometric phase
 - Non-cyclic spatial geometric phase
 - Geometric phase for mixed state
- 3. Summary

Quantum state tomography of entangled 2-qubits

ν	Mode 1	Mode 2	h_1	q_1	h_2	q_2
1	$ H\rangle$	$ H\rangle$	45°	0	45°	0
2	$ H\rangle$	$ V\rangle$	45°	0	0	0
3	$ V\rangle$	$ V\rangle$	0	0	0	0
4	$ V\rangle$	$ H\rangle$	0	0	45°	0
5	$ R\rangle$	$ H\rangle$	22.5°	0	45°	0
5	$ R\rangle$	$ V\rangle$	22.5°	0	0	0
7	$ D\rangle$	$ V\rangle$	22.5°	45°	0	0
3	$ D\rangle$	$ H\rangle$	22.5°	45°	45°	0
9	$ D\rangle$	$ R\rangle$	22.5°	45°	22.5°	0
10	$ D\rangle$	$ D\rangle$	22.5°	45°	22.5°	45°
11	$ R\rangle$	$ D\rangle$	22.5°	0	22.5°	45°
12	$ H\rangle$	$ D\rangle$	45°	0	22.5°	45°
13	$ V\rangle$	$ D\rangle$	0	0	22.5°	45°
14	$ V\rangle$	$ L\rangle$	0	0	22.5°	90°
15	$ H\rangle$	$ L\rangle$	45°	0	22.5°	90°
16	$ R\rangle$	$ L\rangle$	22.5°	0	22.5°	90°

D.F. James et al., Phys. Rev. A 64 (2001) 052312.

Experimental setup

Typical results --- χ oscillations at $\sigma_{\pm z}$

S

Typical results --- α oscillations at $\sigma_{{}^{\pm_z}}^{{}^{p}}$

Analysis

$$(1)\left\langle \boldsymbol{\sigma}_{+z}^{s} \cdot \boldsymbol{\sigma}_{+z}^{p} \right\rangle = 0.543 \times (1 + 0.069 \cdot \sin 9^{\circ}),$$

$$(2)\left\langle \boldsymbol{\sigma}_{+y}^{s} \cdot \boldsymbol{\sigma}_{+z}^{p} \right\rangle = 0.543 \times (1 + 0.069 \cdot \cos 9^{\circ}),$$

$$(3)\left\langle \boldsymbol{\sigma}_{+x}^{s} \cdot \boldsymbol{\sigma}_{+z}^{p} \right\rangle = 0.501 \times (1 + 0.820 \cdot \sin 88^{\circ}),$$

$$(4)\left\langle \boldsymbol{\sigma}_{-x}^{s} \cdot \boldsymbol{\sigma}_{+z}^{p} \right\rangle = 0.501 \times (1 - 0.820 \cdot \sin 88^{\circ}),$$

$$(5) \left\langle \boldsymbol{\sigma}_{+z}^{s} \cdot \boldsymbol{\sigma}_{-z}^{p} \right\rangle = 0.457 \times (1 + 0.122 \cdot \sin 19^{\circ}),$$

$$(6) \left\langle \boldsymbol{\sigma}_{+y}^{s} \cdot \boldsymbol{\sigma}_{-z}^{p} \right\rangle = 0.457 \times (1 + 0.122 \cdot \cos 19^{\circ}),$$

$$(7) \left\langle \boldsymbol{\sigma}_{+x}^{s} \cdot \boldsymbol{\sigma}_{-z}^{p} \right\rangle = 0.499 \times (1 + 0.833 \cdot \sin 88^{\circ}),$$

$$(8) \left\langle \boldsymbol{\sigma}_{-x}^{s} \cdot \boldsymbol{\sigma}_{-z}^{p} \right\rangle = 0.499 \times (1 - 0.833 \cdot \sin 88^{\circ}),$$

$$(9) \left\langle \boldsymbol{\sigma}_{+z}^{s} \cdot \boldsymbol{\sigma}_{+x}^{p} \right\rangle = 0.473 \times (1 + 0.706 \cdot \cos 11^{\circ}),$$

$$(10) \left\langle \boldsymbol{\sigma}_{+y}^{s} \cdot \boldsymbol{\sigma}_{+x}^{p} \right\rangle = 0.473 \times (1 + 0.706 \cdot \sin 6^{\circ}),$$

$$(11) \left\langle \boldsymbol{\sigma}_{+x}^{s} \cdot \boldsymbol{\sigma}_{+x}^{p} \right\rangle = 0.506 \times (1 + 0.025 \cdot \sin 11^{\circ}),$$

$$(12) \left\langle \boldsymbol{\sigma}_{-x}^{s} \cdot \boldsymbol{\sigma}_{+x}^{p} \right\rangle = 0.494 \times (1 - 0.025 \cdot \sin 11^{\circ}),$$

$$(13) \left\langle \boldsymbol{\sigma}_{+z}^{s} \cdot \boldsymbol{\sigma}_{+y}^{p} \right\rangle = 0.527 \times (1 + 0.653 \cdot \sin 11^{\circ}),$$

$$(14) \left\langle \boldsymbol{\sigma}_{+y}^{s} \cdot \boldsymbol{\sigma}_{+y}^{p} \right\rangle = 0.527 \times (1 + 0.653 \cdot \cos 6^{\circ}),$$

$$(15) \left\langle \boldsymbol{\sigma}_{+x}^{s} \cdot \boldsymbol{\sigma}_{+y}^{p} \right\rangle = 0.506 \times (1 + 0.213 \cdot \sin 11^{\circ}),$$

$$(16) \left\langle \boldsymbol{\sigma}_{-x}^{s} \cdot \boldsymbol{\sigma}_{+y}^{p} \right\rangle = 0.494 \times (1 - 0.213 \cdot \sin 11^{\circ}),$$

F A

ЈЯ FШF

These 16-values \square density matrix, ρ

Quantum state tomography of neutron's Bell-state

$$\left|\Psi_{1}\right\rangle = \left|\rightarrow\right\rangle \left|I\right\rangle + \left|\leftarrow\right\rangle \left|II\right\rangle$$

Schematic view of the experiment

Quantum state tomography --- comparison

Classical and quantum inteterference 21. Oct. 2005, Palacký University, Olomouc, Czech Republic

Neutron optical experiments exploring foundamental quantum-phenomena

Yuji HASEGAWA

Atominstitut der Österreichischen Universitäten, Wien, AUSTRIA PRESTO, Japan Science and Technology Agency, JAPAN

- 1. Neutron interferometer/polarimeter
- 2. Recent neutron optical experiments
- 2-1 Quantum contextuality
 - Violation of a Bell-like inequality
 - Kochen-Specker-like paradox
- 2-2 Quantum state tomography
- 2-3 Geometric phase
 - Non-cyclic spatial geometric phase
 - Geometric phase for mixed state
- 3. Summary

Geometric phase

<u>Cyclic evolution</u>: $|\Psi(T)\rangle = e^{i\phi} |\Psi(0)\rangle$

Rewriting with a periodic function, $(|\phi(T)\rangle = |\phi(0)\rangle$)

 $|\Psi(t)\rangle = e^{if(t)} |\phi(t)\rangle$ with $f(T) - f(0) = \phi$

Multiplying and integrating the Schrödinger equation,

$$\int \langle \Psi(t) | \hat{H} | \Psi(t) \rangle dt = i\hbar \int \langle \Psi(t) | \frac{d}{dt} | \Psi(t) \rangle dt$$

Thus, one obtains total phase $\phi = -\frac{1}{\hbar} \int_{0}^{T} \langle \Psi(t) | \hat{H} | \Psi(t) \rangle dt + i \int_{0}^{T} \langle \phi(t) | \frac{d}{dt} | \phi(t) \rangle dt$ $= \delta + \gamma$ dynamical geometric Pancharatnam (*56) Berry (*84) Simon (*83) Aharonov & Anandan (*87) Samuel & Bhandari (*88)

ШF

Geometric phase for 1/2-spin system

Example: 1/2-spin of neutrons in a magnetic field

 $|\Psi(T)\rangle = \begin{bmatrix} \exp(i\mu Bt/\hbar) \cdot \cos(\theta/2) \\ \exp(-i\mu Bt/\hbar) \cdot \sin(\theta/2) \end{bmatrix}$

 θ : polar angle from the direction of the magnetic field

For a periodic evolution, $(T = n\pi\hbar/\mu B)$

 $\begin{cases} \delta = n\pi \cdot \cos\theta & \text{dynamical} \\ \gamma = n\pi \cdot (1 - \cos\theta) & \text{geometric} \end{cases}$

Geometric phase in split-beam experiment

Experimental results (1)

Geometric phase for mixed state

Experimental results

34

Work in progress --- new sophisticated setup

Work in progress --- production of mixed states

(1) Random arrival time: B(t_{rnd}) → P(t)
(2) Random magnetic field: B_{rnd}(t) → P(t)
(3) Mixture of pure and complete mixed state (Werner state analogy): p·|Ψ_{pure}><Ψ_{pure}|+(1-p)·diag(1/2,1/2)
(4) Inhomogenous magnetic field: B(r) → P(r)

Summary

Quantum contextuality: violation of a Bell-like inequality Kochen-Specker-like paradox

Quantum state tomography:

These tomographical technique will be applied to, (decoherence/depolarization process,

characterization of robustness of geometric phase, non-unitary evolution of neutron's entangled state, etc.

especially from the polarized incident!

\bigstar Geometric phases:

→ Error tolerant and robust phase

