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Designing optimum completely positive maps for quantum teleportation
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We study a general teleportation scheme with an arbitrary state of the pair of particles (2 and 3) shared by
Alice and Bob, and arbitrary measurements on the input particle 1 and one of the members~2! of the pair on
Alice’s side. We find an efficient iterative algorithm for identifying optimum operations on Bob’s side. In
particular, we find that simple unitary transformations on his side are not always optimal even if particles 2 and
3 are perfectly entangled. We describe the most interesting protocols in the language of extremal completely
positive maps.
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Of many potential applications of quantum informatio
processing, the quantum teleportation is probably the m
appealing example. Several experiments@1# have been done
since the first proposal in@2#, confirming thus that
teleportation—a popular subject of science-ficti
literature—is indeed feasible, at least if one deals w
simple quantum objects.

Ideal teleportation requires a source of maximally e
tangled particles and a very delicate measurement on
sender’s side. These are not always easy to do with real
experimental devices. For example, it has been shown in@3#
that a never-failing Bell-state measurement is imposs
with linear elements and detectors only. More severe lim
tions might arise if the teleported object gets more com
cated.

However, even with restricted resources there is still
possibility to optimize the teleporting scheme. Optimizati
over the joint measurement on particles 1 and 2and the
operation on the particle 3 for the given state of the sha
pair ~particles 2 and 3! has been done in@4#. Here we put a
more severe restriction on the resources and ask the fol
ing question: What is the optimum operation on particle
~output of teleportation! for the given resources of the share
entangled pairs of particles~2 and 3!, and of the measure-
ments performed jointly on particle 2 and the input parti
1? Several attempts have been done in this direction. In@5#
the authors analyzed a teleportation with realistic linear e
ments and maximally entangled shared state. Optimizatio
protocols with arbitrary shared entangled states has been
sued in@6# and@7#, but the optimization was done over un
tary transformations only.

The main goal of this paper is to consider the most g
eral case. For the given resources of the sender~type of the
measurement on particles 1 and 2! and resources on th
quantum channel shared by two parties~the state of particles
2 and 3!, we will optimize the teleportation protocol by find
ing the optimum operation that should be applied by
receiver on particle 3. In contrast to the naive picture s
gesting that every interaction of a quantum system with
vironment leads to a ‘‘loss of information,’’ we here find th
such an interaction on receiver’s side might enhance the
delity of teleportation even if the pair of particles constitu
ing the quantum channel are perfectly entangled.
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Let us consider the teleportation of an unknown stater̄1
of particle 1 between two parties called Alice and Bob. L
us assume that before the teleportation starts they share
particles in an arbitrary statet23. Alice then performs a mea
surement on particles 1 and 2 and sends the outcome
classical channel to Bob. Based on the classical commun
tion he receives, he performs a transformation on particle
The optimum transformation is such that the final state
particle 3 gets as close to the input stater̄1 as possible on the
average.

The measurement performed by Alice will be describ
by a positive operator-valued measure~POVM! $P12

j %,
( jP12

j 51. Its elements generate probabilities of all possi
outcomes of Alice’s measurement. Consider the situat
where one such particular outcome, sayj 5a, has been reg-
istered with probabilitypa . The state of the third particle
conditioned on this result reads

r3
a5

1

pa
Tr12$r̄1t23P12

a %5
1

pa
Tr1$r̄1O13

a %, ~1!

whereO13
a 5Tr2$t23P12

a %. Now Bob applies a (a dependent!
transformation on this state. The most general transforma
is a trace preserving completely positive~CP! map of the
form @8#

Fa~r3
a!5(

k
Ak3

a r3
aAk3

a† , (
k

Ak3
a†Ak3

a 51. ~2!

The optimality of the given set of transformations will b
judged by the fidelity of the corresponding teleported st
averaged over all possible outcomesa and over a distribution
of input statesr̄1; the averaging over input states will b
denoted^•••&. To simplify further considerations let us as
sume that the input states are pure@9#. In that case the fidel-
ity of teleportation can be defined asF5Tr$r̄3r3%, wherer̄3
is the input state in the Hilbert space of particle 3 andr3 is
the teleported state. Using Eqs.~1! and~2! the average fidel-
ity becomes

^F&5(
a

Tr13H ^r̄3r̄1&(
k

Ak3
a O13

a Ak3
a†J . ~3!
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This expression is to be maximized over the set of all p
sible operations applied to particle 3.

Although the following optimization can be carried o
for arbitrary dimensional Hilbert spaces, we will illustra
the idea on the simple example of spin-1/2 particles. T
generalization to more dimensions is straightforward.

First one has to choose an appropriate distribution of
put states. Obviously, the choice depends on the prior kno
edge one has about the state to be teleported. We will ass
a complete ignorance of Alice and Bob about the incom
state, which is the usual situation described by the isotro
distribution of input states. More general situations can
handled analogously, see the reference after Eq.~4!. Further,
the input density matrix will be decomposed in some basis
Hermitian generators. In the case of spin 1/2, the conven
choice is the basis of Pauli spin matrices. After substitut
the decomposition into Eq.~3!, and integrating over the
whole surface of Poincare sphere, we get

^F&5
1

2
1

1

12 (
a

(
k

Tr$sW •Ak
aOW aAk

a†%, ~4!

where OW a5Tr1$sW 1O13
a %, sW 5(sx ,sy ,sz), and where we

have now dropped the unnecessary subscript of partic
@10#.

Since CP maps corresponding to different registrationa
are independent, each term on the right-hand side of Eq~4!
can be maximized independently. Omitting therefore no
tion a and using the constraint(kAk

†Ak51, the expression to
be maximized is

(
k

Tr$sW AkOW Ak
†2AkLAk

†%5maximum. ~5!

Variation of this expression with respect toAk
† gives the ex-

tremal equation in the form

(
i

s iAkOi5AkL, ~6!

whereL is the~Hermitian! Lagrange operator. It can be de
termined from Eq.~6! as follows:

L5~XW •OW 1OW •XW !/2, ~7!

where we have introduced Hermitian operatorsXW

5(kAk
†sW Ak that provide another representation of the C

map $Ak%. Equation~6! can be brought to the form suitab
to iterations. Multiplying it byAk

†s j from the left and sum-
ming overk we obtain

XW L5OW 2 i uXW 3OW u, ~8!

a formula suitable to iterative solving is obtained by add
0W 5XW 2XW to the left-hand side of Eq.~8! and rearranging

XW 5XW 1OW 2~ i uXW 3OW u1XW L1H.c.!. ~9!
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The iterative algorithm for finding optimum CP maps bas
on Eqs.~7! and ~9! is the main formal result of the presen
article. Starting from some ‘‘unbiased’’ CP map, for examp
XW 50W ~means that particle 3 is always brought to the ma
mally mixed state!, the equations can be successively itera
until the stationary point is attained. In this way we get t
operatorsXW corresponding to the optimum transformation
particle 3.

Notice that the average fidelity of teleportation bears
very simple form when expressed in terms ofXW ,

^F&5
1

2
1

1

12 (
a

Tr$XW a
•OW a%. ~10!

Notice also that̂ F& is a linear functional ofXW . This means
that all its maxima lie on the boundary of the set of phy
cally allowed operatorsXW that is determined by the constrain
of complete positiveness of the corresponding transform
tions. So there is a clear connection between optimum t
portation protocols and extremal CP maps. The topology
CP maps is a well studied field related to many problems
quantum information processing. We will use some of t
recently derived results on CP maps for the discussion
some cases of special interest.

But before we come to this point let us first demonstr
the usefulness of our iterative optimizing algorithm on
interesting example involving spin-1/2 systems. We will co
sider the realistic situation with a perfect source of sha
particles but with an imperfect measurement. The imperf
measurement will be drawn from this one-parametric fam
of POVMs,

P12
a 5

sin2u

2
u22&^22u1

1

2
ufa&^fau

ufa&5cosuu12&2u21&,

P12
b 5

sin2u

2
u11&^11u1

1

2
ufb&^fbu

ufb&5cosuu21&1u12&, ~11!

P12
c 5

sin2u

2
u12&^12u1

1

2
ufc&^fcu

ufc&5cosuu22&1u11&,

P12
d 5

sin2u

2
u21&^21u1

1

2
ufd&^fdu

ufd&5cosuu11&2u22&.

Here u1& and u2& are two orthogonal states, for exampl
states spin up and spin down in thez direction andu
P@0,p/2#. One boundary pointu50 corresponds to the per
fect Bell measurement. Alice gets no information about
incoming state, but the teleportation with fidelity one is po
sible. The other boundary pointu5p/2 corresponds to a
projective measurement on the first particle and no meas
1-2
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ment on the second one. In this casePa5Pd andPb5Pc,
and we have only two distinct outcomesPa1Pd

5u2&^2u1^ 1̂2 and Pb1Pc5u1&^1u1^ 1̂2. Alice gets
maximum amount of information about the input state, b
the ‘‘teleported’’ state bears no relation to the input state
the quantum resources are wasted.

For intermediate values ofu, less information is extracted
about the input state and an imperfect quantum teleporta
is possible. As we have mentioned above, we will take
particles 2 and 3 in a maximally entangled state, for
stance, let them be in the singlet statet235

1
4 (12s1xs2x

2s1ys2y2s1zs2z). Accordingly, the operatorsOW a have the
form,

OW a54RsW 14rW, ~12!

R5S cosu 0 0

0 cosu 0

0 0 cos2u
D , rW5S 0

0

2sin2u
D . ~13!

The operatorsOW generated by the remaining three POV
elementsPb, Pc, andPd differ from Eq. ~13! only in signs
of its elements, and hence, their contribution to the aver
fidelity ~10! is the same.

Fidelities~10! of the optimum Bob’s transformations tha
were found by our iterative algorithm~7! and ~9! for the
above Alice’s measurements are shown in Fig. 1~solid line!.
As could have been anticipated, the fidelity continuou
changes from the classical limit^F&52/3 to the maximum
value of^F&51. It is interesting to note that the optimum C
maps for cosu>1/2 are actually unitary operations. How
ever, for cosu,1/2 unitary operations are not optimum, s
Fig. 1 ~dashed line!. This becomes a trivial statement
cosu50. In that case Alice performs no measurement
particle 2, and therefore the state of particle 3 remain
complete mixture for any outcome a she obtains. So the
delity of the ‘‘teleported’’ state is 1/2 if one is allowed t
perform unitary transformations only. In contrast, if o
adopts more general transformations, Bob can construc

FIG. 1. Fidelities of optimum CP maps for Alice’s measur
ments ~11!. Solid line shows the performances of optimum C
maps; dashed line shows the performances of optimum unitary
erations. Dotted horizontal line shows the boundary between c
sical and quantum teleportation protocols.
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input state with fidelity 2/3 on the basis of the outcomes
Alice’s measurement~which is here optimal state estima
tion!, thus attaining the classical limit.

The most interesting situations correspond to Alice’s m
surements that allow nonclassical teleportation only if f
lowed by anonunitary operation on Bob’s particle. In ou
case this happens for 0,cosu<A221 ~see later! and the
optimum CP map turns out to be a kind of decoherence p
cess@11#.

Let us emphasize again that the above example of t
porting spin 1/2 system has been chosen for the sake of
plicity only. If needed, our iterative algorithm could b
straightforwardly generalized to larger Hilbert spaces. T
generalization consists of replacing Pauli spin matrices
the appropriate basis of Hermitian operators in that space
replacing the integration over the surface of the Poinc
sphere by the integration over the surface of generali
N-dimensional sphere. Nevertheless, the relative simpli
of the set of CP maps operating on a 2-dimensional sp
allows one to get further insight into the optimum telepor
tion protocols and obtain analytical results. We will therefo
stick to the teleportation of spin 1/2 particles in the follow
ing.

First let us express the operation acting on Bob’s part
using operatorsXW ,

F~1/21wW •sW /2!51/21~ tW1TwW !•sW /2 ~14!

where tW andT are defined as follows:XW 5TsW 1 tW, andwW is
the Bloch vector defining the state of the Bob’s particle b
fore he applies the operationF. To each operation on the
Bob’s particle there corresponds a simple transformation
the Poincare sphere: The unit sphere is mapped onto a
lipsoid, the lengths of its axes being the eigenvalues ofT,
which is translated bytW from the origin. Of course the ellip-
soid has to lie within the unit Poincare sphere~positivity!.
However, not all such ellipsoids definecompletelypositive
maps that are the most general maps in quantum mecha
Recently, it has been shown@12# how to parameterize the se
of extremalCP maps comprising the boundary of the conv
set of all CP maps. This set contains all Bob’s optimu
transformations. MatrixT can be always brought to the d
agonal form by a unitary transformation. When in diagon
form, extremal CP maps can be parametrized by two anglu
andv,

T5S cosu 0 0

0 cosv 0

0 0 cosu cosv
D , tW5S 0

0

sinu sinv
D ,

with uP@0,2p), vP@0,p). Now let us show how the abov
example can be elegantly solved using this trigonometric
rametrization of extremal CP maps. Due to the form of m
trix R @Eq. ~13!# it can be shown that the optimum CP map
degenerated,u52p2v, so there is only one free paramet
left.

Substituting the trigonometric parametrization withu
52p2v and the POVM element~13! into Eq. ~10! and

p-
s-
1-3
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maximizing the fidelity with respect tov, one easily finds the
analytical expression for the optimum fidelity:

^Fopt&55
cos4u24 cos2u12

326 cos2u
, cosuPF0,

1

2D
~cos2u12 cosu13!/6, cosuPF1

2
,1G .

~15!

In contrast to this, the fidelity of the optimum unitary oper
tion is given by the bottom expression for all anglesu and
thus coincides with the optimum value if cosu>1/2. We note
that the optimum unitary operation is the identity mapu
5v50 ~Bob leaves particle 3 alone! for all u. The analytical
solution confirms the results obtained numerically with t
help of our iterative algorithm shown in Fig. 1. The mo
interesting Alice’s measurement~11! is that for which opti-
mum unitary operation just gives the classical limit^F&
52/3'0.667, but enables nonclassical teleportation usin
nonunitary CP map. This happens for cosu5A221, opti-
mum fidelity being^Fopt&5(318A2)/21'0.6816.

The enhancement of quantum teleportation by nonuni
process has recently been discussed by Badzia¸g et al. @11# in
a slightly different context. They considered teleportati
protocols with a perfect Bell analyzer but with imperfe
preparation of the shared pair of particles, and found out
teleportation protocols could sometimes be enhanced by
interaction of the teleportation device with environme
~damping!. The most pronounced example yielded improv
ment corresponding to our cosu5A221 case. In fact, the
choice of our POVMs~11! that are Bell states being subje
to a kind of decohering process has been inspired by t
result. Now we can use the language of extremal CP map
explain why the result of Badzia¸g et al. is so exceptional. A
general teleportation protocol is, in fact, a CP map compo
of two different maps: The first oneC being the Alice’s
transformation of the input state to the output state sen
Bob; the second being the operationF on the output state
r,

e

d

ys

. A

A
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applied by Bob. The teleportation protocolV becomes per-
fect if the two maps make up the identity map:

V~r̄1![(
a

paFa@Ca~ r̄1!#5 r̄3 , ; r̄1 . ~16!

Obviously, the most interesting protocols are protocols wh
both partsC and F are extremalCP maps, because the
contain optimal maps, see discussion after Eq.~10!, and be-
cause all remaining protocols are just convex combinati
of such ‘‘extreme’’ protocols. Among the protocols consis
ing of two extremal maps, one can find the standard telep
tation, both maps here being unitary operations, but thi
also the case of our example~11!. This is immediately seen
using another equivalent representation of ourC @13#:

C( r̄1)5Tr1$r̄1
Tx13%, wherex135O13

T̃ , andT̃ is partial trans-
position with respect to system 1. For POVMs from o
example~11! and shared singlets, we have that the opera
x is at most rank 2 operator and hence the mapC it gener-
ates is extremal.

The trigonometric parametrization of optimum CP ma
hints on a possible generalization of the situation discus
in @11#. One could think of a protocol where the first CP m
C would not be degenerated with respect to anglesu andv
@unlike in ~13!#. Such nondegenerated Alice’s POVMs wou
not, however, lead to substantially new physics, since als
this case the optimum Bob’s operation would be a kind o
damping channel.@12#.

In conclusion, we have derived an iterative algorithm f
finding optimum CP maps for quantum teleportation a
have identified situations where a unitary transformation
the third particle is not optimal and should be replaced b
more general completely positive map.
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