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Reconstruction of the spin state
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~Received 13 January 2000; published 9 June 2000!

An ensemble of spin-12 particles is observed repeatedly using Stern-Gerlach devices with varying orienta-
tions. Synthesis of such noncommuting observables is analyzed using the maximum likelihood estimation as an
example of quantum-state reconstruction. Repeated incompatible observations represents a new generalized
measurement. This idealized scheme will serve for analysis of future experiments in neutron and quantum
optics.

PACS number~s!: 03.65.2w
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I. INTRODUCTION

Quantum mechanics of spin-1
2 particles often serves as a

illustrative example of key quantum physical concepts
standard textbooks of theoretical physics@1#. The importance
of spin-12 states is enhanced by the fact that they represen
smallest possible amount of quantum information—quant
bits (q bits!. Aside from theoretically valuable ‘‘Gedanken
experiments, spin-1

2 particles such as electrons, neutrons,
the circular polarization states of light quanta have allow
the realization of a variety of fundamental experiments
matter wave and quantum optics. They play a crucial role
many sophisticated schemes involving entanglement,
state analysis, or teleportation. Spin coherence and the
sibility to reconstitute the beam of spin-1

2 particles after the
Stern-Gerlach~SG! detection have been considered as
‘‘Humpty-Dumpty’’ problem @2#. Several approaches fo
measurement and estimation of spin states have been co
ered recently@3–6#. In this Brief Report, the maximum like
lihood ~MaxLik! estimation of a spin-12 quantum state will be
formulated as an illustrating example of a more general tr
ment @7,8#. The formalism presented here reveals the ti
relationship between quantum theory and statistics. The
thesis of many independent and nonequivalent idealized
tection schemes of the SG type will be interpreted as a k
of generalized measurement of quantum states. It will be
obviously useful tool for spin-state analysis in neutron de
larization experiments, neutron as well as photon interfero
etry, and for quantum state reconstruction, to name just a
typical examples.

Let us begin with a brief review of the basic properties
spin-12 quantum systems. A pure state~projector! shall be
represented by the expression

ua&^au5
1

2
~11ais i !, ~1!

where a5(a1 ,a2 ,a3) is the three-dimensional normalize
state vectors i , i 51,2,3 represent the Pauli matrices, a
the summation convention for repeated indices is used. S
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the scalar product of two projectors is given as

z^aub& z25
1

2
~11aibi !.

A mixed state, which is described by a density matrix, can
parametrized by

r̂5p1ua&^au1p2u2a&^2au ~2!

5
1

2
1

1

2
s iai~p12p2!, ~3!

wherep11p251 and the statesu6a& denote a general or
thogonal basis. Alternatively the spin state is completely
termined if the associated polarization vector

r i5^s i&5ai~p12p2! ~4!

is known, where, as usual, the brackets^& denote an expec
tation value. The degree of polarization is defined by

ur u2<1,

with ur u250 for completely unpolarized~mixed! state and
ur u251 for fully polarized~pure! states.

The polarization or spin may be measured by project
the state into the given directions6a of a SG apparatus
Closure relation and operator representation of such a de
can be written as

ua&^au1u2a&^2au51̂, ~5!

Â5
1

2
@ ua&^au2u2a&^2au#. ~6!

Assuming for the sake of simplicity always the same to
number of particlesN, the number of particles with eithe
spin ‘‘up’’ or ‘‘down’’ yields estimates of the projections o
the polarization vector according to the relations

n65Np~6a!5
1

2
N~16ra!. ~7!
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Since this may be done for three orthogonal directions
spacexi ( i 51,2,3) the polarization vector may be found b
eliminating the total number of particlesN

r i5
ni 12ni 2

ni 11ni 2
. ~8!

By this procedure each polarization component is determi
separately. It represents a correct solution, provided that
resulting polarization lies upon or inside the Poincare´ sphere
ur u2<1. However, the ‘‘states’’ outside the Poincare´ sphere
violate the positive semidefiniteness of quantum states
thus leads to an improper quantum physical description
noise @8#. Similar problems appear in the case when m
than three projections are used. Some results of SG pro
tions might appear as incompatible among themselves du
the fluctuations and noises involved. Various SG meas
ments are not equivalent, since they are observing diffe
‘‘faces’’ of the spin system. Such measurements, even w
done with an equal number of particles, determine differ
projection with different errors. Detected datani ,6 collected
from SG observations inM directions6ai , i 51,2, . . . ,M
sample a variety of binomial distributions. Significantly, t
detected datani ,6 fluctuate with the root-mean-square erro
given byAN@12(ra j )2#/2, depending on the deviations b
tween projections and the true~but unknown! direction of the
spin r . Therefore the various projections cannot be trus
with the same degree of credibility, since they are affec
by different errors. The incompatibility of various SG me
surements becomes manifest in quantum theory as the c
sponding operators~1! do not commute for different orienta
tions aj . Such data cannot be obtained in the course of
same measurement, but may be collected by repeated ex
ments. Thus an optimal procedure must predict an unkno
state and simultaneously take into account data fluctuati
This indicates the inevitable nonlinearity of such a kind
algorithm. MaxLik estimation does this job and fits the da
to a quantum state. As will be demonstrated in the follow
section, the synthesis of incompatible measurements ma
considered as a unique concept of measuring quantum st

II. SPIN ESTIMATION

It is assumed that all spin-1
2 particles supplied by the

source are prepared in the same mixed state, and an
lossless SG analysis is performed repeatedly on a syste
N such particles with varying orientation of the SG devic
Provided that the detection has been done withM different
orientations,N* M particles have been used altogether a
the unknown quantum state should be determined. The
sults of the measurement may be characterized by the
tings6aj of the SG apparatus and by the relative frequenc
of the outcomes 1/2(16Xj )5nj ,6 /N. Then the problem is
to find the state~s! that fit~s! the data in an optimal way. On
might be tempted to sample and invert the probability, p
dicted by quantum theory, as it is done in the case of Eq.~8!.
Because each SG detection is represented by a com
measurement, the sum of the relations~5! over all orienta-
tions of the SG device reads
01410
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M (
j

M

uaj&^aj u1u2aj&^2aj u51̂, ~9!

where 1̂ denotes the unit matrix. In general, however, t
expected relations

TrH r̂
1

M
u6aj&^6aj uJ 5

1

2M
~16Xj ! ~10!

cannot be fulfilled because the system is overdetermined
the data are fluctuating. Hence, the probabilities cannot
mapped in a straightforward manner just according to
relative frequencies of outcomes.

The MaxLik principle serves as a tool to overcome th
problem. It allows one to find the most probable state c
sistent with the data. As the measure of probability the lik
lihood functional may be constructed, which corresponds
the product of all probabilities for all detected data,

L~ r̂ !5)
j

~^aj ur̂uaj&!N(11Xj )/2~^2aj ur̂u2aj&!N(12Xj )/2.

~11!

The extremal states of this likelihood functional satisfy t
nonlinear operator equation@8#,

1

2M (
j

F ~11Xj !
uaj&^aj u

^aj ur̂uaj&
1~12Xj !

u2aj &^2aj u

^2aj ur̂u2aj&
G r̂5 r̂.

~12!

The quantum state shall be represented by its respective
larization. Using the relation~1!, multiplying both sides by
sk and performing the trace, one obtains

R~r !r1K ~r !1 iK ~r !3r5r , ~13!

where the functionsR(r ) andK(r ) are defined as

R~r !5
1

2M (
j

S 11Xj

11aj
•r

1
12Xj

12aj
•r

D ,

K ~r !5
1

2M (
j

S 11Xj

11aj
•r

2
12Xj

12aj
•r

D aj .

Since real and imaginary parts are independent from e
other; the real part of Eq.~13! is sufficient to derive the
necessary conditions. Hence the final equation for the po
ization vector reads

R~r !r1K ~r !5r , ~14!

which can be solved conveniently by iteration. Starting fro
the centerr50 of the Poincare´ sphere, the left side of Eq
~14! yields the first correction, which in turn may be used
input for a subsequent iteration step. This procedure prov
a rapidly converging algorithm for MaxLik fitting of an un
known quantum state inside the Poincare´ sphere.

An equivalent result may be derived by parametrizing
likelihood function directly in terms of polarization. The re
1-2
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FIG. 1. Results and interpreta
tion of the spin-state reconstruc
tion for numerical simulation of
the Stern-Gerlach detection wit
five different orientations of the
apparatus~see the text!.
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evant part of the likelihood function corresponding to t
observation of particular data then can be written as

L~r !5)
j

~11r•aj !N(11Xj )/2~12r•aj !N(12Xj )/2. ~15!

The vectorr parametrizes an arbitrary unknown polarizati
inside the Poincare´ sphere and the products runs over allM
directions. The standard statistical approach using Max
(]/]r )ln L leads to a vector equation for the extreme va
of the polarization@4#

(
j

Xj2aj
•r

12~aj
•r !2

aj50. ~16!

Equation~14! is equivalent to Eq.~16!. Indeed, Eq.~16! is
nothing else thanK (r )50, implying the relationR(r )51.
Vice versa, Eq.~14! could be rewritten in the form of Eq
~16! as well.

In Fig. 1 the results of numerical simulations are show
Stern-Gerlach detection is simulated here for projection o
‘‘unknown’’ state ~north pole on the Poincare´ sphere! in five
different directions. Each ‘‘measurement’’ is done with 2
impinging particles registered either with spin up~upper left
panel! or with spin down~lower left panel!. Both left panels
show typical values for a single experiment. For each p
jector three bars are plotted: the first bars~black! show the
true value of the probability whereas the second bars~gray!
exhibit the statistical fluctuations of the ‘‘counted’’ even
around the respective true value. Finally the hollow bars r
resent the results of the reconstruction—the statistics of
reconstructed state corresponding to the given projector.
01410
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tice here that upper and lower panels are complementary
the sum of the respective true probabilities is always exa
1. The right panels visually present the results obtained
repeating the experiment 10 times. Diamond symbols den
the positions of five projectors on the Poincare´ sphere. Or-
thogonal projectors in the opposite directions are not
picted. Stars indicate the position of the reconstructed sta
The true state corresponds to the north pole. Viewing
sphere from the top yields the lower right panel.

Quantum physical formulation inherently requires a no
trivial interpretation which can hardly be recognized fro
the equation for the polarization vector~16!. Since the above
scheme determines a quantum state, a generalized mea
ment concept described by a probability operator meas
~POM! @9# must exist, the result of which is the quantu
state. Indeed, such a probability operator measure can
found by proper renormalization of the original SG analy
@8#. Let us define the POM as renormalized SG projector

u6aj&^6aj uR5
16Xj

2M ^6aj ur̂eu6aj !
u6aj&^6aj u, ~17!

for each indexj. The closure relation then reads

(
j

M

uaj&^aj uR1u2aj&^2aj uR51̂r , ~18!

and the renormalized POM fulfills the conditions

Tr$r̂eu6aj&^6aj uR%5
1

2M
~16Xj !. ~19!
1-3
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Here r̂e denotes the extremal state—a solution of Eq.~12!.
Relation ~18! indeed coincides with the equation for e
tremal states~12!, whereas the condition for expectation va
ues~19! is fulfilled as an identity. The reconstruction is don
in that subspace where the renormalized POM reproduce
identity operator. Specifically this means that the iden
operator on the right-hand side of Eq.~18! is spanned by the
one-dimensional subspace only~i.e., by a single ray!, pro-
vided that the extremal stater̂e is a pure state. For a gener
extremal density matrix the reconstruction is accomplish
in the whole two-dimensional Hilbert space. The distincti
between relations~9!,~10! and ~18!,~19! characterizes the
subtleties of quantum state reconstruction. The MaxLik
lution may be also interpreted in the language of probab
ties. The detected datani ,6 sample different binomial prob
ability distributions for i 51, . . . ,M . MaxLik estimation
finds a common multinomial distribution and thus allow
sampling of the data with seemingly the highest likelihoo

The method developed here may be compared with
existing approaches. Jaynes’s maximum entropy princ
~MaxEnt! @10# has been applied as well to the estimation
spin-12 states in Refs.@3,6#. In general, however, these tw
methods are not equivalent. The MaxLik method seeks
the most likely solution consistent with the data, where
with the MaxEnt method one searches for the worst solu
still consistent with the data. This difference may be attr
uted to the different prior information in the maximum pro
ability principle @11#. But this is not the only difference
External conditions of both approaches differ substantia
MaxLik has been applied to measurements with many p
jectors. However, the same conditions cannot be applied
the MaxEnt approach because there only three free pa
eters are necessary for the determination of an unknown
state. Therefore, the conditions defined by Eq.~10! cannot be
fulfilled in general. Obviously the MaxEnt concept is n
applicable if more than three independent conditions are
posed upon the density matrix of a spin-1

2 system.
In the papers of Ref.@12# an optimal strategy for measu

ing an unknown two-state system is investigated. As a res
an optimal coherent measurement may be predicted. On
ys
-

-
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other hand, we aimed to optimize not the measurement it
but its mathematical treatment. This seems to be reason
from the experimentalist’s point of view because it is que
tionable how to do a general measurement described b
POM. In the Ref.@13# the information content of the larg
ensemble of identically prepared quantum systems is inv
tigated. It is proved that for the spin-1

2 ensembles the Crame´r-
Rao bound can always be attained and optimal meas
ments may be well approximated by adaptive separable o
This corresponds well to the results presented in this B
Report. Our analysis is not restricted to the asymptotic
main and emphasizes the relationship between quan
theory and mathematical statistics. As we have dem
strated, for a given measurement the MaxLik approach p
vides an optimal treatment in the sense that it reproduce
generalized quantum measurement.

III. SUMMARY

The synthesis of incompatible observations has b
evaluated using the concept of MaxLik estimation. It defin
a generalized measurement of a quantum state. The Ma
procedure provides a quick recipe for an experimentalist.
a priori knowledge about the spin state is needed. The ite
tive algorithm based on the solution of Eq.~14! is capable of
finding the polarization of the most probable state, provid
that many detections with various settings of SG appara
have been done. In the near future the formalism develo
here will be applied to the investigation of various problem
such as the spin-state estimation in neutron depolariza
experiments, the estimation of quantum states inside s
beam neutron interferometers, or the analysis of entang
states.
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