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Testing of quantum phase in matter-wave optics
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Various phase concepts may be treated as special cases of the maximum likelihood estimation. For example,
the discrete Fourier estimation that actually coincides with the operational phase of Nohgspage Mandel
is obtained for continuous Gaussian signals with phase modulated mean. Since signals in quantum theory are
discrete, a prediction different from that given by the Gaussian hypothesis should be obtained as the best fit
assuming a discrete Poissonian statistics of the signal. Although the Gaussian estimation gives a satisfactory
approximation for fitting the phase distribution of almost any state, the optimal phase estimation offers in
certain cases a measurably better performance. This has been demonstrated in a neutron-optical experiment.
[S1050-294{@9)02307-0
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I. INTRODUCTION ria, phase prediction based on them is not optimum in gen-

eral. The difference between Gaussian estimation and opti-

Physics enables us to comprehend Nature by considerinfum treatments is caused by the statistical nature of the

intimate relations between various effects. Any physical obPheénomena. This can be experimentally registered in an in-

servation can always be compared and analyzed in relatiol§rferometer with discrete Poissonian signal. Several possible
with a particular internal model, providing us with some ad_mterpl;etatlon_s dOf tdh's comparison farﬁ notewo_rthy.IThls

ditional insight into the laws of Nature. However, this effort may be considered as a testing of the operational quantum

need not and usually does not tend to a unique solution. Ehase prediction. It quantifies how well the NFM phase con-

may happen that there are several plausible models and tifEPL f!ts reallty:(||) It Inay be mter_pretgd ,f"‘s a npntnwal
statistically motivated “quantum calibration” of an interfer-

given observation is not able to discriminate among them: L : : .
On the other hand, it may also happen that some of th meter. The visibility of interference fringes is usually used
’ o this purpose. However, this criterion focuses on the wave

assumptions about the system need not be apparent. Cert fthe d d sianal onlv. Th d hod
statements therefore pretend to be more general than they a%operty of the detected signal on'y. The proposed metho

in reality. This interplay between physics and philosophyNvolves and evaluates the whole detection process, particu-
may be demonstrated on the long standing problem of quar“:"r'y the ability to control phase shift in the experimental
tum theory—on the problem of quantum phase. Phase me&frangement and the statistics of the detected signal. This

surements belong to standard detection techniques revealifg€Ms t© be in accordance with the pragmatic interpretation

the wave property of the signal. The quantum phase, how?! quantum theory, where the results depend irreducibly on

ever, encountered theoretical difficulties when an adequatjgOth state preparation anq measureméii. In the framt_a-
quantum theory was constructed] work of wave-particle duality, the proposed treatment tries to
There are several concepts for the description of phase ghswer the questlc_)n: Does the; mterfer'mg signal re'ser,nble
guantum theory at present. For an up to date overview sggiore c_jlscrete particles or_cla_53|cal contlnu_ous waves?)
[2,3]. Some of them emphasize the theoretical aspects, othelsProvides an example of indirect observation of several pa-
the experimental ones. The operational approach formulate@Meters. Pa_rtlcularly, by detept!ng_ the interference frmges,
by Noh, Fougees, and MandeINFM) [4,5] is motivated by the phase shift as well as the visibility may be determined as
the correspondence principle in classical wave theory. Thuctuating variables. It provides one of the simplest ex-

interference pattern is adopted for the scheme where the Sﬁ{nples of the so-called “quantum state reconstruction” pro-

and cos function of the phase shift are measured simultaqedur.e' . . .
This paper is organized as follows. In the second section,

neously in the eight-port homodyne detection. An equivalenth in id f ing the NEM sch ith i
measurement may be realized on the Mach-Zehnder interfef'€ Main idea o comparing the scneme with an opti-
um phase prediction is developed. In the third section, the

ometer, provided that the measurement of an unknown pha . i X
idea is generalized in order to apply the scheme for phase

shift is done with and without an additionat/2 phase . :
shifter. The NFM scheme is plausible whenever the signa easurement in matter-wave interferometry. The fourth sec-
: jon provides the experimental realization in neutron interfer-

behaves like a classical wave since besides the principle o trv of th its obtained
correspondence, no other assumption has been used. ometry of the results obtained.
' As a particular rgsult, the NFM sc'he.me prowde§ the OP- ||, STATISTICAL FORMULATION OF OPERATIONAL
timum result, provided that the statistics of the signals is
. - . . PHASE CONCEPTS
represented by Gaussian statistics with a phase sensitive
mean and a phase insensitive noise. Since realistic signals in In this section the operational phase concept will be natu-
the quantum world do not meet these rather restrictive criterally embedded in the general scheme of quantum estimation
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theory [6,7]. A similar approach has already been used in 1 158 2
[8,9]. However, since the purpose of the detection scheme is [,(G,V,I)ocexp{ - —2{ I—= > Ii} ]
to predict the phase shift after each run, the point estimators 20 2i
of phase corresponding to the maximum-likelihd®tl ) es-

timation will be used her§10,11]. Assume an ideal device T vl _ 2

with four output channels enumerated by indices 3,4,5,6, XeXp{ 402[\” Rcos 0= )] }
where the actual values of intensities are registered in each

run. The values fluctuate in accordance with the statistics of 1,

continuous Gaussian signals. The mean intensities are modu- X ex F‘ZR oS (6 Onem) %)
lated by a phase parametéras

and is maximized by the choice of parameters
— 1 0= Onem 6
l5.4=5 (12 V cosd), NFM ©

V=min 11, (7)

I_5’6=|§(liVsin 0), (1)

1 6
|=§i=§‘,3|i. (8)

wherel andV are total input intensity and visibility of the
interference fringes, respectively. The energy is split sym- )
metrically between all the output ports. This device repreHence the operational phase concept of Noh, Freggeand
sents nothing else than a classical wave picture of the origiMandel is nothing but the ML estimation for waves repre-
nal eight-port homodyne detection scheme. Equivalently, if€nted by continuous Gaussian signal with phase-
also corresponds to a Mach-Zehnder interferometer, whelidependent and symmetrical noises. These rather strong as-
the measurement is done for an unknown phase shift togeth&mptions are associated with the behavior of waves in
with a zero and ar/2 auxiliary phase shifter. In this case, the classical field theory. _ _
data are not obtained simultaneously, but should be collected Since realistic signals are discrete they meet neither of
during repeated experiments. Provided that a particular conih€se criteria and therefore, deviations in the optimum phase
bination of outputd 3,1,,15,! has been registered, the phasepredlctlon_should be expected. Assume the Poissonian statis-
shift should be inferred. In accordance with the ML approacHics of an ideal laser. Together with the phase, all the param-
[12], the sought-after phase shift is given by the value thap_ters which are not controlled in the experiment will be op-
maximizes the likelihood function. The likelihood function timally predicted as well. Denote for concreteness the
corresponding to the detection of given data reads detected discrete values as numbeys,,ns,ne. The like-
lihood function corresponding to this particular detection as
a function of the parameteisV, andN reads

1 1 — —
= _ (_ _ 2_ _ 2
E(e)_ 0_4477_28)([{ 20_2( [|3 |3] [|4 |4] E(H,V,N)O( e—ZN(l_Vcose)n3

2

N) ng+n,+ns+ng

X (14+V cosh)"(1—-Vsinh)"s(1+V sing)"s,
9

The ML estimation for parameters gives the optimum values
Here the variatiorr represents the phase insensitive noise ofor the phase shift, the visibility, and the mean particle num-
each channel. The sampling of intensities may serve for aber as
estimation of phase shift, the average number of particles,

—[IS—EJZ—[IG—EF)]. 2

and the visibility simultaneously. A notation analogous to the i(,_i Ng—Nz Ng—Ng (10)
definition of phase by Noh, Fouges, and Mand€l5] can be €=V Ng+nNg ' Ng+ns|’
introduced as
2 2
ng—n Ng—nN
V= \/ n4+n3 n6+n5 ’ (1)
. =l +i(ls—1g) 4 67
elONFM= > 1 3
l3—14)"+ (51 Ng+n,+ns+n
V(I3=14)?+(Is—1¢) N=— 4 5 6 (12
2
R=\(I3—14)%+(I5—1g)>2 (4 These relations provide a correction of the Gaussian wave

theory with respect to the discrete signals. Besides the phase
shift, the visibility of the interference fringes and the total
The likelihood function may be rewritten to the form energy input can be evaluated simultaneously.
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An apparent difference between relatio®—(8) and BEA{'*;’"FROMREACTOR
(10—(12) represents the theoretical background of the pre- UNKNOWN PHASE
sented treatment. Adopting the interpretation of RBf, in SHIFT
both these approaches the unnormalized cos and sin func-
tions of the phase shift are detected. However, the normal-
izations differ in both approaches. In the former Gaussian
case, the normalization is performed only once, whereas in

N TTTTTTTTTT ITTTTTTTTTTTT

. . L . N VA A
the latter Poissonian case it is done in two steps. The cos and _‘v
sin functions of phase are normalized separately with respect
to the total number of particles on both the output ports and AUALIARY T LT
PHASE SHIFTER

then again among themselves. Obviously, both predictions
will coincide provided that there is almost no information
available in the low field limitl,N—0O. Similarly in the
strong field limitl,N—oo, where any statistics approaches
the Gaussian one, the differences must disappear. Possible
deviations may appear in the intermediate regime, character- DETECTORS
ized approximately by conditiolsN~O(1). Thetest of the
difference between Eqg6) and (10) is proposed as con-
trolled phase measurement. The phase difference may be ad- _ . . N
justed to a certain value and estimated independently usin@e correqundmg phase detection may d|ffer s.|gn|f|cantly. It
both the method¢6) and (10) in repeated experiments. The iS not surprising that the measurement with h!gher average
efficiency of both methods is then compared by evaluation of Nerdy gives pettqsharpe} resglts as observed in R¢16].
confidence intervals. Since any imperfections of the detec- The 6?”3'3/5'5 given here will be adopted to Fhe case of
tion scheme will smoothen the differences, it is questionabl@€Ulron interferometry, when the number of particles can be

whether both schemes can be experimentally distinguishe&'.ef‘e.cte‘j and discriminated with high.efficier[d)?]. Highly
This idea will be pursued in the following sections. efficient neutron detectors then provide almost perfect neu-

Before doing this, the statistical analysis may clarify sometron number measurements. However, the interference pat-

subtle points of the NFM treatment, particularly then thet€rn exhibits lower visibility and the splitting process is far

nature of discarded data. Obviously the data yielding théWay from the symmetrical case. This will be taken into

ambiguous phase' “N=0/0 in Eq.(6) would provide zero account when adopting the scheme to the case of neutron
visibility for both Egs.(7) and (11). For a more detailed mteArferlometry. vsis for d . f liah d h
analysis, the Bayes theorem may be applied as well. In this df}.a ogous Sa_ma ys;}s Of; .etectlop % '% t needs o'lt er
case the likelihood functions quantify the phase informatioan0 : |c§1:|on. |Ece tfe etllt;,lency 0 pbot% ftec“gr.‘ IS eﬁs
involved in the detected data as posterior phase distributiorin@n unity, number of particles cannot be detected in such a

Gaussian statistics provides homogeneous posterior pha§ga'3ht_f°m’|ard tvr\:ayd I?sttead, thebabseréc;e orrﬁ)reseni_e oft_the
distribution, whereas Poissonian statistics yields the fourYV€aK signai on the detector can be used for phase estimation.

peak posterior distribution of the phase shift resembling efH1OWever, we plan to deal with this separately in the future.

fectively the homogeneous one. This statistical analysis sup-

ports the conclusion of Ref§13—15 that the detected data IIl. PHASE ESTIMATION IN NEUTRON

cannot be discarded. Provided that some data are discarded, INTERFEROMETRY

the average number of particles, i.e., the average energy cor-

responding to the phase detection, changes. Particularly, pro- Assume the following modification of the scheme devel-
vided that the experiment has been ddhéimes and a total oped above. The output ports of an interferometer are con-
numberM; of particles has been detected in each run, thesidered to be nonsymmetrical. The measurement is done with
average number of particles is simdly ,,M;/M. Provided —many auxiliary phase shifters. Neutron beams inside the per-
that some data appearirg, times are discarded and not fect crystal neutron interferometer will be described at first
included in the evaluation the corresponding phase estimas a classical wave. The signafs, |Jh detected at the two
tion is done with an average intensity losg;M; output portso,h (Fig. 1) are regarded as stochastic Gaussian
— 3 gisMi)/(M—My). Obviously, the measurement with intensities with phase sensitive means

and without discarding is done with a different energy input
and this difference may be substantial. For example, this
explains the ambiguity of the interpretation in R¢L6].
When the phase of a quantum field is measured against a
classical field, no data are discarded since the field is strong. Th=1"—1Vcoq 6+ A))

The relative phase of two quantum fields may then be evalu- J I

ated separately against a strong field and a difference of two

such phase values provides the relative phase. However, thighere 6 is the true phase shift between the two branches of
cannot be directly compared with direct measurements othe interferometerl® and|" are the mean intensities of the
two (weak quantum fields against themselves, when somewo interference fringed,” stands for the modulation ampli-
data are canceled. Although both measurements have bearde of the interference fringéannormalized visibility, and
done with the same quantum states, the average energies ®f are the values of the auxiliary shifts

FIG. 1. Outline of the experimental setup.

19=1°+1Ycog 6+A4)), (13
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.N—=1, NeN. (14

The Gaussian statistics of the detected signal yields its like-

lihood function in the form

1 N—-1 o
ﬁ(@mex%-—gggg%[U?—'ﬁ2+UF—_ﬁzﬁ-
(15

Introducing the complex parametBras
R=2> (I°—1Mexp—i4)), (16)
J

the parameters maximizing the likelihood function read

em:%’ (17)

o_l o] _1 h
| _N;'J’ |“—N§j‘,lj, (18
IV:min(%,I",lh]. (19

The relation(19) follows from the condition of semidefinite-

ness of the amplitude’<min{1°,1". Expression(17) rep-
resents a generalization of the NFM formu@&, which may

PRA 60

N—-1

co=I1 T (apme,

j=0 a=o,h

(23

where the mean output intensitiés are given by Eq(13)
andnj’ represent the number of detected neutrons. Unfortu-
nately, the explicit relations analogous to Edq%0)—(12)
cannot be found analytically. The analysis must therefore be
carried out numerically. However, various limiting and
asymptotic cases can be discussed analytically as shown in
[18]. DFT estimation is the best estimation available pro-
vided a large number of particles is detected. No difference
between Gaussian and Poissonian cases can therefore be ex-
pected in the regime of high intensitieg,|,>1. In the op-
posite case of low output intensiti¢s,|,<1, the most fre-
quent samples are “no detection at all” and “one neutron
detected” in some beam at some value of the auxiliary shift.
Direct substitution of these samples in both the Poissonian
and the Gaussian likelihood functions tends to the prediction
with undefined phase with'=0. Similarly to the previous
case of strong field, where both methods are equally good, in
the low field limit both methods are equally bad. Similarly in
the limit of low visibility IY<min{l,,I,}, the results ob-
tained with the use of the true Poissonian statistics are virtu-
ally identical to those yielded by the DHI8]. No difference
between the wave and quantum approach can be observed
here. The difference between the predictions for the quantum
and wave phase estimation in a realistic experiment should
become significant for visibility close to unity and average
number of detected particle of order one.

be recovered provided that the measurement is done at the

two positionsAg=0, A;= /2 only. Sometimes it happens
thatR=0 for recorded data. In this case the data are phase
insensitive, yielding V=0, and the posterior phase distribu-

tion is homogeneous.

Notice that this approach is well known in optics as phas

estimator of discrete Fourier transformati@FT) [18]. De-
fine for a discrete signd#; its DFT as

N—-1

1 o
X(m)=N JZO Fiexp(—i2mjm/N). (20

As follows from the comparison of relatiorf20), (17), and

IV. EXPERIMENT

Our experiments were performed at the neutron interfer-
ometry setup at the 250 kW TRIGA reactor in Vienna. Ther-
mal neutrons which are emitted from the moderator of the

Geactor behave like statistically independent particles. There-

fore the correct description of the counting statistics of the
input beam and both output beams is a Poissonian distribu-
tion [17]. Figure 1 shows the experimental arrangement. The
input beam is split by the perfect crystal interferometer into
two partially coherent beams. One of the beams passes a
phase platelgray shaded regignwhich introduces an un-
known phase shift which has to be estimated from the ex-

(19), the visibility and phase of the generalized NFM treat-perimental data. Then both beams are passing an auxiliary
ment correspond to the modulus and argument of the conphase shifter which modulates the output intensities at the

plex coefficientX(1)=R,

g=argX(1)}, 1V=|X(1)]. (22)

detectors andh. At the two output ports BF3 gas detectors
enable single neutron counting with nearly 100% efficiency.
The very low intensities at the outgoing beaidsneutron

per secongallow a comfortable electronic separation of the

The discrete signal corresponds to the difference of regisdetector pulses. The mean number of collected neutrons is a
tered discrete scans of interference fringes created by chanfinear function of the counting time which enables an adjust-

ing the auxiliary shift,
h
Fj_I?_Ij- (22)

The frequencym of the interference fringe in E¢21) is one
since the fringe has been scanned only once,(E4).

ment of the desired intensities by proper selection of the
counting time. In neutron interferometry an auxiliary phase
shifter can be rotated in several discrete positions denoted by
indicesj in the intensity equation. Unique phase estimation is
achieved even when other parameters of the s@up, the
mean intensities, the visibility, and the frequency of the os-

The generalization NFM scheme given by phase estimageillation pattern are unknown. In our experiment eight equi-
tion (17) is not optimal provided that the detected signal isdistant positions of the phase shifter were used for generation

Poissonian. In this case the likelihood function reads

of the intensity modulation.
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FIG. 2. (a) Detected interference fringls,P as the mean of 690 single measuremefity @nd 68.3% error bars for numerical values
1°=2.21 neutrons|"=6.33 neutrons|Y=1.03 neutrons, and=4.83 rad. A typical single detectidrj? denoted by symboléll) is shown
as an examplgb) Experimentally obtained E(A 6) denoted by symboléll) are compared with theoretical prediction denoted by corre-
sponding mean valuesX) and error bars for 690 samples.

number of counts
AE(r8)

° T T T T T T T 0.00 ! N ! ! i
0 1 2 3 4 5 6 7 0 1 2

3
position of the auxiliary shifter AQ

To compare the efficiency of the NFM phase predictionsthis represents a critical situation, because even though there
with the optimum Poissonian ML estimation the following are fewer than 10 counts in each experimental run, one is
procedure has been chosen. Each sample of data consistingnetheless trying to get an estimation of the value of the
of the number of neutrons counted in beam$ in eight phase shift. The experimental values/E are depicted in
positionsAg, ... ,A;, Eg. (14), was processed using NFM Fig. 2(b) by full squares. For comparison, a theoretical pre-
formula(17) resulting in phase predictiof\ry . The relative  diction corresponding to the same values of parameters as in
frequencyfy(A#¢) characterizes how many times the esti-the real experiment were simulated in the Monte Carlo ex-
mated phasé@ygy falls into the chosen phase windawd  periment using 40000 samples. Open circles in Figp) 2
(confidence intervalaround the true phase shift. The sameshow the corresponding mean values of the difference. How-
procedure was repeated for phase prediction based on naver, since the experimental data are limited due to the ex-
merical maximization of the Poissonian likelihood function perimental conditions and available time to the relatively
(23) [9,8] yielding the relative frequency of “hits’f,(A¢).  small number of 690 samples, the real data are fluctuating
The quantity around the mean values. Statistical significance of the experi-

mental results is demonstrated again using Monte Carlo

AE(AO)=Tf(A0)—T4(A0) (24 simulations. Another 20 simulations have been done, each of

them with 690 samples. The variance of the enseribg, }
represents the difference in efficiency of the quantum ands shown in Fig. 2b) as “error bars” for each phase window.
wave phase estimations for the given phase windogv If A significant difference between the effectiveness of clas-
this quantity is found to be positive, it means that the ML sical and optimum treatments is apparent in Fig. 2. The op-
estimation is better than its Gaussian counterfsmiply be-  timum estimation provides an improvement in fitting of the
cause more estimates of the phase shift fall into the chosgphase shift and the difference is beyond the estimation error,
angular window if the former procedure is followedf, on  approximately 2.5 standard deviations in the optimum case.
the other hand, this quantity is not different from zémma  Obviously, no better performance of the ML method can be
statistically significant waythe two data evaluation proce- expected for large values of the phase windd# (any sen-
dures are statistically equivalent and no discrimination issible statistical method would yield rather reasonable re-
possible. sultg. Likewise, no real improvement over the Gaussian es-

The result of the data analysis is shown in Figs. 2—4. Eaclimate can be expected whar is close to zero, because too
figure consists of two different parts. The left panels showfew data would then be accepted. The existence of a “best
the detectedor simulated data. The right panels then pro- choice” for the phase window is therefore in itself an inter-
vide the interpretation of the corresponding data. Analysis oksting feature of the method we propose. However, notice
the experimental data is summarized in Fig. 2. In addition tahat the generalized NFM schemer equivalently DFT
experiment, two Monte Carlo simulations have been perphase estimatrfits the phase shift quite well. The most
formed simulating experimental conditions under which thepronounced difference is about 6% in the window of width
difference between Poissonian and Gaussian predictions &bout 1.256 rad. For example, it means that the Gaussian
negligible. The result of the simulations is shown in Fig. 3.fitting procedure hits this window 442 times, whereas the
Finally, the possibility to estimate several parameters simulPoissonian one hits it 484 times from a total number of 690
taneously is illustrated in Fig. 4. The differendeE was  events. The experimental difference in the score is therefore
calculated using 690 experimental samples measured in eX2, i.e., 6% in favor of the latter method. This difference is
periment with average beam intensiti€s=2.2 neutrons|"  a random number and theory predicts its value as %4
=6.3 neutrons, and visibility normalized with respect to theThe observed difference is therefore not large, yet statisti-
0 beam being about 47%. As already explained in Sec. lically significant.
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FIG. 3. (a) Interference fringdf (O) and error bars corresponding to computer simulation of the experiment with numerical values
1°=2.21 neutrons|"=6.33 neutrons|Y=0.258 neutrons, and=4.83 rad. A typical sample denoted by symbd®) is shown as an
example.(b) AE(A#) corresponding to the same computer simulation is evaluated. Mean valjeand error bars corresponding to 690
samples are given. The interference pattern can be recognized but the Gaussian and Poissonian statistics cannot be distinguished from the
phase observation. The interpretation of parieJsand (d) is the same as fofa) and (b), respectively. Numerical values aré=0.551
neutrons| "= 1.582 neutrons,Y=0.258 neutrons, and=4.83 rad.

35- (a) (b)
0,12
£ 304 >
E c
a o
S *1 S 0,08
o
s . ®
204 —
[S o
o )
L 15 = 0,04
E | 5
= _—
C 104 &J
5 T T T T T T T T 0.00-
0 1 2 3 4 5 6 7 0,0 0,2 0,4 0,6 0,8 1,0
aye o . (o]
position of the auxiliary shifter Vi

FIG. 4. (a) Interference fringd_f (O) and error bars corresponding to a computer simulation of the experiment with numerical values
1°=22.1 neutrons,"=63.3 neutrons| Y= 10.3 neutrons, and=4.83 rad. A typical sample is denoted by symbd@ as an exampleb)
Histogram of estimated visibilities normalized with respect todh®am obtained in the same simulation. The true normalized visibility is
46.7%.
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In most cases, however, the difference between the disssibilities normalized with respect to tleebeam is shown as
crete and continuous nature of the signal is subtle enough tesult of a simulation with ten times stronger output beams
be hidden in various imperfections of the experimental setupcompared to the output beams used in the experiment. It is
For illustration, a computer simulation of two experimental apparent that the estimated visibilities are distributed with
setups has been performed similarly to the above-mentione@aussian-like shape around the value of the true visibility.
case. A data analysis of the Monte Carlo experiment with
V|_S|b|l|ty as smalI_a; 1/4 ofithe. y|S|b|I|ty m_Flg. 2.|s shown in V. CONCLUSION
Fig. 3(b). No statistically significant discrimination between
the Gaussian and Poissonian methods is possible in this case.A statistically motivated analysis of neutron interferom-
The result of a simulation of an experiment with four-timesetry provides a correction to the previously introduced op-
less energy of interfering beams is shown in Figd)3Also  erational quantum phase concept. Since the standard ap-
in this case, no discrimination is possible. In spite of theproach has been universally derived, without considering the
apparent interference patterns the classical description cftatistics of the interfering fields, it cannot be optimal. This
phase can be fully justified both in the cases of low visibility additional knowledge may be used for improved predictions
and low intensity. Particularly the latter case may appear aand testing. This scheme therefore provides a statistically
counterintuitive, since measurement with a small number ofmotivated evaluation of the whole interferometric system.
particles is traditionally considered as a domain of quantuninstead of the question of the wave theory: “How precisely
physics. can the interference fringes be distinguished?” a more so-

Unlike the case of phase, the ML estimation of the vis-phisticated question is here formulated as “What statistical
ibility is strongly biased in the case of small intensities. properties can be recognized from an interference pattern?”
There is a simple explanation for this behavior. In the low-In particular, the experiment performed with neutrons dem-
intensity regime the character of individual detected samplesnstrated a measurable improvement of phase fitting for dis-
is determined rather by fluctuations than by actual paramerete Poissonian signals.
eters of the experimental setup, as seen in Fig)., 3or ex-
a_\mple. The ML estimation of the visib_ility _fits _the_se fluctua_- _ ACKNOWLEDGMENTS
tions and, as a consequence, the estimation is biased. This is
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