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Quantum estimation of a phase shift is formulated within quantum mechanics and information
Using Bayes’ estimation, the phase can be attributed even to a single interfering particle. The m
demonstrated for neutron interferometry operating near the quantum limit. [S0031-9007(96)003
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Though interferometry has a long track record as
useful technique for research, the quantum limitat
of phase measurement must be acknowledged as
open problem in quantum mechanics and one wh
engages the attention of theoreticians and experimenta
alike [1]. To date, only a few experiments have be
published concerning phase-shift measurements at
energies limited by quantum fluctuations [2–5], and t
results of those published were sometimes affected
the particular statistical treatment. For example, o
the root-mean-square deviation of the phase shift w
evaluated, phase was implicitly assumed as a quan
variable with discrete spectrum, some registered d
were neglected, or the phase-shift invariance of resul
distribution was anticipated [6]. The phase estimat
even for very few detected particles is reported for
first time in this Letter. The quantum phase proble
in interferometry is addressed from the viewpoints
quantum mechanics and of information theory. As a m
goal, phase information ascribed to a single particle
quantified using Bayes’ (B) estimation. On the oth
hand, the ultimate phase resolution may be achieved u
the maximum likelihood (ML) estimation for a larg
mean number of recorded particlesN ¿ 1. Depending
only on thecountedstatistics of the particles, the theor
is valid for both bosons and fermions. The method
illustrated on the ideal interferometer. In comparis
with the approaches already used in quantum mecha
0031-9007y96y76(23)y4295(4)$10.00
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[4] based on the correspondence principle, the propo
treatment emphasizes the information content included
phase sensitive data. The theory is used for analysi
phase estimation in neutron interferometry [3], offerin
an excellent possibility to operate in the quantum regi
when only a few particles are detected.

The scheme considered here is the Mach-Zehnder in
ferometer as is generally used in neutron interferome
(Fig. 1). An unknown phase shiftu characterizes the path
difference in both arms of the interferometer. Classica
the measured signal represented by the mean numbe
particles depends on the induced phase shift, yielding
terference fringes on the outputs. This may be descri
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FIG. 1. Scheme of a perfect crystal neutron interferometer
the Mach-Zehnder type.
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within quantum mechanics and mathematical statistic
the following way. The estimated phase shiftu, so-called
true value of the phase shift, represents an unknown b
nonrandomc-number displacement parameter. It sho
be determined by evaluation of measured phase sen
data, denoted formally as a quantum variableyk. Here the
number of particles detected on theo andh output ports at
m positions of an auxiliary phase shifter serve this purpo
The indexk represents a detected combination of coun
numbers,k ;

n
No

1 , Nh
1 , . . . , No

m, Nh
m

o
. The phase sensitiv

ity is manifested in the counting distribution of possib
outputs aspksud. The operator inducing the phase shiftN̂
is given by the difference in the number of particles
both arms of the interferometer and the phase-shift tr
formation of the input statejcl is jcsudl ­ e2iuN̂ jcl [6].
Hence quantum mechanics predicts the conditional pr
bility of outputyk when the true phase shift isu aspksud ­
jkyk jcsudlj2. The number of detected particles and
distribution plays a crucial role replacing the notion
classical signal. For input Poissonian statistics the ou
remains Poissonian with phase dependent mean num
N̄jsud,

pj,Nj sud ­ e2N̄j sud fN̄jsudgNj

Nj!
, (1)

where the indexj enumerates different positions of th
auxiliary phase shifter. The formulation is comm
for both fermions and bosons, even if formal d
ferences appear in quantization. Fermions enter
interferometer always one by one distinguished by th
quantum numbers, and all the operators and quan
states must be constructed using corresponding
particle quantities. However, detectors register the t
number of particles accumulated in a given detec
time not distinguishing internal quantum numbers.
the other hand, bosons may enter as many-par
states. For example, the projection of output coh
ent statejcsudl ­ jfN̄jsudg1y2lcoh into the Fock basis
jyjl ­ jNjlFock yields the Poissonian statistics (1
In more mathematical language, interferometers are
scribed by the SU(2) symmetry group, generators of wh
may be constructed using both the commuting or antic
muting annihilation operators [7]. Nevertheless, th
formal aspects are beyond the scope of this contributi

The phase sensitive data, represented formally
valueshkij, i ­ 1, . . . , n, are collected duringn repetitions
of the counting. Such measurements may serve
evaluation of the phase shift, provided that identi
conditions are kept. If the ensemble of all repea
measurements is large enough, the particular variationhkij
appears with the probability

pshkijjud ­ pk1 sud · · · pkn sud .

Denoting formally the phase estimation using detec
data hkij as psfjhkijd, the average conditional pha
distribution of theinferred phase shift f, when u was
4296
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valid using measurements repeatedn times, reads

P̄nsfjud ­
X
hkij

psfjhkijdpshkijjud . (2)

Here then summations independently deplete all possib
values for eachki . The statistics of the inferred variabl
f is fully determined by the statistics of the measur
eventspksud and by the strategy applied to the evaluatio
of phase sensitive data represented by the distribu
psfjhkijd. Two methods will be suggested in this Lette
(i) Estimation based on Bayes’ theorem represents
interval estimation and may be regarded as a distribut
of probability in the sense of degrees of belief [8]. Th
estimation of phase sensitive data has the form o
likelihood function

pBsfjhkijd ­
1

Chkij

nY
i­1

pki
sfd , (3)

where Chki j ­
R2p

0

Qn
i pki sfddf. Assuming the rela-

tions (2) and (3) to be valid, the explicit dependence
the estimation on the true and inferred phase shifts rea

P̄nsfjud ­
X
hkij

1
Chkij

nY
i­1

pki
sudpki

sfd . (4)

(ii) Alternatively, the maximum likelihood estimation [9
representing point estimation may be used. The detec
of datahkij is interpreted as the phasefhkij, maximizing
the probability distribution (3)

pMLsfjhkijd ­ dsf 2 fhkijd . (5)

Assuming the limit of strong field (or, equivalently, tha
n is sufficiently large), the ML analysis achieves th
resolution predicted by the Fisher informationDf ­
1y

p
nI, where I ­

P
kfpksud0g2ypksud, with the prime

denoting the derivationdydu. For this limit the phase
distribution (2) reduces to the product over all the possi
values ofk [6],

P̄limsfjud ­
1

Cnsud

ΩY
k

f pksfdgpksud
æn

, (6)

where Cnsud ­
R2p

0 dfh
Q

k fpksfdgpksudjn. This distri-
bution characterizes the spread of the point estimatio
Nevertheless, the discrete estimator converges to the
value of the phase only for a sufficiently high number
particles registered in the interferometric experiment.
this is not true and if there are not enough detected p
ticles, the application of point estimations is meaningle
since the convergence is no longer guaranteed.

Before approaching the experimental part, the theo
will be illustrated through the simple but theoretical
worthwhile example of a single mode ideal interferome
with 50y50 lossless beam splitters and closed inp
port 2. Since measurement in the intervalf0, 2pg will
be assumed, the counting at phase shiftsu and u 2
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py2, denoted here by the counting numbersNo
1 , Nh

1 and
No

2 , Nh
2 , will be considered. These numbers correspo

to the outputsN3, N4, N5, and N6 in scheme 2 [4].
The dependence of the average number of counts on
induced phase shift determines the interference fringe

N̄
o,h
1 sud ­

N̄in

2
s1 6 cosud ,

N̄
o,h
2 sud ­

N̄in

2
s1 6 sinud ,

N̄in being the total number of particles feeding t
open interferometer input port. The limiting distributio
function (6) may be reduced to a simple form

P̄limsfjud ~
Y
j,b

fN̄b
j sfdgnN̄b

j sud, (7)

with the product overj ­ 1, 2 and b ­ o, h. The pre-
dicted distribution represents an envelope of histogra
of discrete phase estimations. Its form is independen
the input statistics and depends on the mean numbe
particles in the output only [10]. For Poissonian sta
tics, both inferred Bayes’ and ML distributions (4) and (
depend only on the total number of particlesN ­ nN̄in.
In this case, a multiple measurement with very we
input gives the same phase prediction as the single m
surement with an equivalent total particle number. S
nificantly, the content of phase information may alwa
be defined for Bayes’ estimation, while the point estim
tions become moot in the case of weak fields. On
other hand, in the asymptotic regime, the ML estimat
(6) yields the resolution1y

p
N , whereas Bayes’ estima

tion (4) gives the value
p

2yN only. The method alread
used in quantum mechanics for quantum phase interp
tion [4] is closely related to this treatment. Any “single
detection ofk ; hNo

1 , Nh
1 , No

2 , Nh
2 j is semiclassically in-
d
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terpreted as detection of the phasefk,

eifk ­ fNo
1 2 Nh

1 1 isNo
2 2 Nh

2 dg

y
q

sNo
1 2 Nh

1 d2 1 sNo
2 2 Nh

2 d2 .

This corresponds to the ML estimation only for stro
fields. Further details will be given elsewhere [10].

Under real circumstances, the experimental conditi
are far away from ideal theoretical assumptions. Sign
cantly, the statistical theory of phase estimation develo
above is still valid, since the existence of interferen
fringes and Poissonian statistics at the output is eno
to justify its usage. Besides the phase shift, the proper
of the source and interferometer (mean number of p
ticles and visibility) may also be inferred from the me
sured data. Below, only the single output (o beam) which
yields a higher visibility than the neglected port (h beam)
will be used. The standard measurement of interfere
fringes in neutron optics is performed inm discrete posi-
tions of an auxiliary phase shifter with controlled valu
of Dj ; j ­ 1, 2, . . . , m and hencek ­ hN1, . . . , Nmj. Each
integerNj characterizes the number of particles coun
at the positionuj ­ u 1 Dj fluctuating with Poissonian
distribution. The average number of particles is

N̄jsud ­ N̄f1 1 V cossu 1 Djdg . (8)

HereN̄ , which is the mean intensity of the output, andV ,
the visibility of the interference fringes, are assumed to
a priori unknown parameters, which may be estimate
together with the phase shift, on the basis of the perform
counting. The estimation of phase shiftf related to the
particular measurementhNjj is then given as

pBsfjhNjjd ~
Z

dN̄
Z

dV
mY

j­1

pj,Nj
sf; N̄ , V d . (9)
ensembles
ter.
L

FIG. 2. Single measurement and its phase evaluation. The left panels show two single measurements selected from the
with mean particle numbers̄N ­ 0.25 (upper panel) and̄N ­ 3.0 (lower panel) counted at nine positions of the phase shif
The right panels show the results of Bayes’ estimation [Eq. (3)], including the68.3% confidence intervals (gray regions), and M
estimation [Eq. (5)] denoted with arrows.
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FIG. 3. Average of many repeated measurements. The left panels display the average of many single measurements
particle numbers̄N ­ 0.25 andN̄ ­ 3.0 repeated 1721 times and 143 times, respectively. The solid lines on the right panels
the average of all singlesn ­ 1d distribution functions [Eq. (4)] while the histograms show the average of ML estimations.
68.3% confidence interval is denoted by gray regions. The dotted line on the right bottom panel predicts the theoretical e
of the histograms [Eq. (6)]. Note the difference between Bayes’ and ML estimation for small particle numbers where
estimation fails. The true valueu is 210±.
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All experiments were performed at the 250 kW TRIG
reactor in Vienna. The experimental setup (Fig. 1) co
sists of a perfect crystal interferometer with one input be
[11], a perfect crystal phase shifter, and two neutron
tectors for theo andh beams. The neutron interferomet
is not lossless, but losses at the mirrors do not influe
the statistics of the beams. The average counting rat
the o beam was 0.7 neutronysec and in theh beam was
1.8 neutronysec. The detection efficiency is nearly 1. A
counted events are independent, and the stationary
mal source leads to Poissonian fluctuations of the co
ing numbers in both beams [3]. By rotating the pha
shifter, the phase difference may be adjusted arbitra
within the intervalf0, 2pg. In the experimental setup th
true value of the phase shiftu was 210±. The measure-
ment was performed in nine positionsDj, as shown in the
left panels of Figs. 2 and 3. This “single measureme
sn ­ 1d is repeated many times under the same conditio
The measurement with̄N ­ 0.25 particles was done 172
times, whereas the detection with̄N ­ 3.0 was repeated
143 times. Each measurement serves as an evaluatio
the overall phase shiftu. In addition, it also determine
the mean particle number̄N and the visibility V . The
content of phase information corresponding to the giv
quantum state is determined by averaging over all infer
phase distributions. The increasing number of counts
viously leads to narrower and more peaked phase distr
tions. The phase information may also be evaluated us
Eq. (9) for very weak fields (see Figs. 2 and 3).

The statistical analysis of the phase shift in interfero
eters was provided free of any assumptions which c
not be verified experimentally. The distribution of th
inferred phase shift was fully determined by the measu
4298
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dependence of counted distribution on the induced ph
shift only. The phase information may also be evalua
for very weak input fields, when point estimations fa
Particularly, the phase distribution may be attributed to
single particle interfering with itself.
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