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Quantum estimation of a phase shift is formulated within quantum mechanics and information theory.
Using Bayes’ estimation, the phase can be attributed even to a single interfering particle. The method is
demonstrated for neutron interferometry operating near the quantum limit. [S0031-9007(96)00382-1]
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Though interferometry has a long track record as d4] based on the correspondence principle, the proposed
useful technique for research, the quantum limitatiortreatment emphasizes the information content included in
of phase measurement must be acknowledged as amhase sensitive data. The theory is used for analysis of
open problem in quantum mechanics and one whiclphase estimation in neutron interferometry [3], offering
engages the attention of theoreticians and experimentalisés1 excellent possibility to operate in the quantum regime
alike [1]. To date, only a few experiments have beerwhen only a few particles are detected.
published concerning phase-shift measurements at low The scheme considered here is the Mach-Zehnder inter-
energies limited by quantum fluctuations [2—5], and theferometer as is generally used in neutron interferometry
results of those published were sometimes affected bgFig. 1). An unknown phase shift characterizes the path
the particular statistical treatment. For example, onlydifference in both arms of the interferometer. Classically,
the root-mean-square deviation of the phase shift wathe measured signal represented by the mean number of
evaluated, phase was implicitly assumed as a quantupparticles depends on the induced phase shift, yielding in-
variable with discrete spectrum, some registered datterference fringes on the outputs. This may be described
were neglected, or the phase-shift invariance of resulting
distribution was anticipated [6]. The phase estimation

even for very few detected particles is reported for the UNKNOWN PHASE SHIFT (6)

first time in this Letter. The quantum phase problem ¢ sed i

in interferometry is addressed from the viewpoints of (Input 2) ( o DETECTOR
quantum mechanics and of information theory. As a mair AN ,</$ (N})
goal, phase information ascribed to a single particle is )« |

quantified using Bayes’ (B) estimation. On the other 2/ | <\i7 ETECTOR
hand, the ultimate phase resolution may be achieved USINge v FROM Al h D o

the maximum likelihood (ML) estimation for a large REACTOR

mean number of recorded particlds> 1. Depending (Input 1) ’
only on thecountedstatistics of the particles, the theory

is valid for both bosons and fermions. The method is

illustrated on the ideal interferometer. In comparisonFiG. 1. Scheme of a perfect crystal neutron interferometer of
with the approaches already used in quantum mechanitse Mach-Zehnder type.

AUXILIARY PHASE SHIFTER (A;)
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within quantum mechanics and mathematical statistics iwalid using measurements repeatetimes, reads

the following way. The estimated phase sHiftso-called

true value of the phase shiftepresents an unknown but P,(¢16) = ZP((ﬁl{ki})p({ki}lﬁ)- (2)
nonrandome-number displacement parameter. It should )

be determined by evaluation of measured phase sensiti
data, denoted formally as a quantum variakle Here the
number of particles detected on thend#h output ports at
m positions of an auxiliary phase shifter serve this purpos
The indexk represents a detected combination of countin
numbersk = {N{,NY, ... ,N;,N,ﬁ;}. The phase sensitiv-
ity is manifested in the counting distribution of possible
outputs ag, (). The operator inducing the phase shift

\ﬁere then summations independently deplete all possible
values for eaclt;. The statistics of the inferred variable
P is fully determined by the statistics of the measured
aventsp, (6) and by the strategy applied to the evaluation
f phase sensitive data represented by the distribution
p(pl{k;}). Two methods will be suggested in this Letter.
(i) Estimation based on Bayes’ theorem represents an
interval estimation and may be regarded as a distribution

is given by the difference in the number of particles inq¢ oronanility in the sense of degrees of belief [8]. The
both arms of the interferometer and the phase-shift transsgtimation of phase sensitive data has the form of a

formation of the input statby) is [(8)) = e "V [4) [6].  |ikelihood function
Hence quantum mechanics predicts the conditional proba-
bility of outputy; when the true phase shiftésasp,(6) =
[(yxl(8))?. The number of detected particles and its
distribution plays a crucial role replacing the notion of
classical signal. For input Poissonian statistics the outputhere Cy,, = f(z)” [T/ pr.(¢)d¢p. Assuming the rela-
remains Poissonian with phase dependent mean numbeisns (2) and (3) to be valid, the explicit dependence of

1 n
pa(@lk}) = o 1:! Pi(), 3)

N;(6), the estimation on the true and inferred phase shifts reads
w0 N (O)]Y . 1
pin,(0) = e N’(g)jNi,, (1) P, (416) = Z T l_[ pi,(0)pr. (). (4)
J ey Sk =1

where the indexj enumerates different positions of the iy Alternatively, the maximum likelihood estimation [9]
auxiliary phase shifter. The formulation is common epresenting point estimation may be used. The detection

for both fermions and bosons, even if formal dif- of gata{k,} is interpreted as the phasy,;, maximizing
ferences appear in quantization. Fermions enter thge probability distribution (3)

interferometer always one by one distinguished by their
quantum numbers, and all the operators and quantum puL(@lki}) = 6(d — duy) . (5)

states must be constructed using corresponding one- . . . .
particle quantities. However, detectors register the totf*SSUMINg the limit of strong field (or, equivalently, that

number of particles accumulated in a given detectior? IS Sufficiently large), the ML analysis achieves the

. g lution predicted by the Fisher informatiahg =
time not distinguishing internal quantum numbers. On"€SQ . .
the other hand, bosons may enter as many-particl /N/nI, where I = Y, [p«(0)'1?/pi(6), with the prime

states. For example, the projection of output coher® enoting the derivationl//d6. For this limit the phase

ent state|y(4)) = |[Nj(9)]1/2>coh into the Fock basis distribution (2) reduces to the product over all the possible

ly;) = INj)rock  yields the Poissonian statistics (1). values ofk [6],

In more mathematical language, interferometers are de- _ 1 n
. . — pi(6)

scribed by the SU(2) symmetry group, generators of which Piin(¢10) = c.0) [ TLpi(e)] , (6)

may be constructed using both the commuting or anticom- " k

muting annihilation operators [7]. Nevertheless, thesg, a0 ¢ (6) = 2 AT [ pu(O)n s distri
. - 2(0) = Jo « Lpi(d)P9% - This distri-
formal aspects are beyond the scope of this contribution.y o characterizes the spread of the point estimations.

;I'he kpha}ss sensitive dat?l, re%rgsgnted formally byjeyertheless, the discrete estimator converges to the true
V? uss{ i =L....n, zre collected during repetitions ; value of the phase only for a sufficiently high number of
of the counting. Suc measurements may serve 0{)articles registered in the interferometric experiment. If
evaluation of the phase shift, provided that identicalps is not true and if there are not enough detected par-

conditions are kept. If the ensemble of all repeateqjqieg the application of point estimations is meaningless,

measurements Is large e.n'ough, the particular varidtign since the convergence is no longer guaranteed.

appears with the probability Before approaching the experimental part, the theory

p{kiHO) = pr.(8)--- pr(6). will be illustrated through the simple but theoretically

' " worthwhile example of a single mode ideal interferometer

Denoting formally the phase estimation using detectedvith 50/50 lossless beam splitters and closed input

data {k;} as p(¢l{k;}), the average conditional phase port 2. Since measurement in the intery@)27] will

distribution of theinferred phase shift ¢, when# was be assumed, the counting at phase shéftand 6 —
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7 /2, genoted here by the counting numbais, Ni' and  terpreted as detection of the phase
N3 ,N;, will be considered. These numbers correspond ibe _ a0 ath 4 iino .k

to the outputsNi, N4, Ns, and Ng in scheme 2 [4]. e =[Ny = Ny + i(Ny = N))]
The dependence of the average number of counts on the
induced phase shift determines the interference fringes as

AW = NP2+ (v - N2

ok N This corresponds to the ML estimation only for strong
NP (0) = —2(1 = cod) - 1S wi :
1 y , fields. Further details will be given elsewhere [10].
_ Under real circumstances, the experimental conditions
N (0) = %(1 + sing), are far away from ideal theoretical assumptions. = Signifi-
2 cantly, the statistical theory of phase estimation developed

Ny, being the total number of particles feeding theabove is still valid, since the existence of interference
open interferometer input port. The limiting distribution fringes and Poissonian statistics at the output is enough

function (6) may be reduced to a simple form to justify its usage. Besides the phase shift, the properties
_ _ . of the source and interferometer (mean number of par-
Piim(#10) o [ [IN? ()N, (7)  ticles and visibility) may also be inferred from the mea-
j.b

sured data. Below, only the single outputl{eam) which
with the product overj = 1,2 andb = o,h. The pre- yields a higher visibility than the neglected paottl§eam)
dicted distribution represents an envelope of histogramwiill be used. The standard measurement of interference
of discrete phase estimations. Its form is independent diringes in neutron optics is performed im discrete posi-
the input statistics and depends on the mean number ¢ibns of an auxiliary phase shifter with controlled values
particles in the output only [10]. For Poissonian statis-of A;; j = 1,2,...,m and henc& = {N,,...,N,}. Each
tics, both inferred Bayes’ and ML distributions (4) and (7) integer N; characterizes the number of particles counted
depend only on the total number of particl¥s= nN;,.  at the positiond; = # + A; fluctuating with Poissonian
In this case, a multiple measurement with very wealkdistribution. The average number of particles is
input gives the same phase prediction as the single mea- _ _
surement with an equivalent total particle number. Sig- Nj(0) = N[1 + Vcodd + Aj)]. (8)
nificantly, the content of phase information may alwaysHere ¥, which is the mean intensity of the output, a¥id
be defined for Bayes’ estimation, while the point estimahe visibility of the interference fringes, are assumed to be
tions become moot in the case of weak fields. On th% priori unknown parameterS, which may be estimated’
other hand, in the asymptotic regime, the ML estimationgether with the phase shift, on the basis of the performed
(6) yields the resolutiori/v/N, whereas Bayes’ estima- counting. The estimation of phase shiftrelated to the
tion (4) gives the valug/2/N only. The method already particular measuremefw;} is then given as
used in quantum mechanics for quantum phase interpreta-

tion [4] is closely re{!ate}tlj toothish treatment. Any “single” P E: ] dN ] dv l_[ pin (BN, V). (9)
detection ofk = {N7{,N{,N7,N,} is semiclassically in- i=1

3 0,151 g = du = 135°

0,10+
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Likelihood function
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FIG. 2. Single measurement and its phase evaluation._ The left panels show two single measurements selected from the ensembles
with mean particle numbery = 0.25 (upper panel) ana&v = 3.0 (lower panel) counted at nine positions of the phase shifter.

The right panels show the results of Bayes’ estimation [Eq. (3)], includin@8®% confidence intervals (gray regions), and ML
estimation [Eq. (5)] denoted with arrows.
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FIG. 3. Average of many repeated measurements. The left panels display the average of many single measurements with mean
particle numbergv = 0.25 andN = 3.0 repeated 1721 times and 143 times, respectively. The solid lines on the right panels show
the average of all singléx = 1) distribution functions [Eq. (4)] while the histograms show the average of ML estimations. The
68.3% confidence interval is denoted by gray regions. The dotted line on the right bottom panel predicts the theoretical envelope
of the histograms [Eq. (6)]. Note the difference between Bayes' and ML estimation for small particle numbers where the ML
estimation fails. The true valug is 210°.

All experiments were performed at the 250 kW TRIGA dependence of counted distribution on the induced phase
reactor in Vienna. The experimental setup (Fig. 1) conshift only. The phase information may also be evaluated
sists of a perfect crystal interferometer with one input beanfior very weak input fields, when point estimations fail.
[11], a perfect crystal phase shifter, and two neutron deParticularly, the phase distribution may be attributed to a
tectors for thew andk beams. The neutron interferometer single particle interfering with itself.
is not lossless, but losses at the mirrors do not influence This work is supported by the East-West program of
the statistics of the beams. The average counting rate itne Austrian Academy of Sciences.
the o beam was 0.7 neutrgeec and in thé: beam was
1.8 neutrorisec. The detection efficiency is nearly 1. All
counted events are independent, and the stationary ther-
mal source leads to Poissonian fluctuations of the count-
ing numbers in both beams [3]. By rotating the phase *Permanent address: Joint Laboratory of Optics, Palacky
shifter, the phase difference may be adjusted arbitrarily ~ University and Czech Acad. Sci., 17. listopadu 50, 772
within the interval[0,27]. In the experimental setup the 07 Olomouc, Czech Republic.
true value of the phase shift was210°. The measure- [1] FOr an up-to-date overview, see R. Lynch, Phys. R,

A > . 367 (1995).
ment was perfo'rmed In niné posfﬂoﬁ, as shown in the » [2] H. Gerhardt, U. Bichler, and G. Liftin, Phys. Let#t9A,
left panels of Figs. 2 and 3. This “single measurement 119 (1974)

(n=1) is repeated m_agy times und_er the same conditions.[3] H. Rauch, J. Summhammer, M. Zawisky, and E. Jericha,
The measurement witN =Q.25 pg_rtlcles was done 1721 Phys. Rev. A42, 3726 (1990).

times, whereas the detection with= 3.0 was repeated  [4] J.W. Noh, A. Fougéres, and L. Mandel, Phys. Rev. Lett.
143 times. Each measurement serves as an evaluation of 67, 1426 (1991); Phys. Rev. A5, 424 (1992).

the overall phase shifi. In addition, it also determines [5] M. Beck, D.T. Smithey, and M. G. Raymer, Phys. Rev. A
the mean particle numbey¥ and the visibility V. The 48, R890 (1993).

content of phase information corresponding to the given[6] Z. Hradil, Phys. Rev. 461, 1870 (1995).

quantum state is determined by averaging over all inferred[?] B. Yurke, Phys. Rev. Lett56, 1515 (1986). _
phase distributions. The increasing number of counts ob-8] M-G. Kendall and A. StuartAdvanced Theory of Statis-
viously leads to narrower and more peaked phase distribu- . ticS (Charles Griffin, London, 1961), Vol. 2.

tions. The phase information may also be evaluated usin 9 A.S. Lane, S.L. Braunstein, and C. M. Caves, Phys. Rev.
: P y A 47, 1667 (1993).

Eq. (9) for_ve_ry weak fi(—?lds (see Figs. 2 a.nd_ 3),' 10] M. Zawisky, Y. Hasegawa, H. Rauch, Z. Hradil,
The statistical analysis of the phase shift in interferom- * g \yska, and J. Frima (unpublished).

eters was provided free of any assumptions which can1] Neutron Interferometry edited by U. Bonse and H. Rauch

not be verified experimentally. The distribution of the (Clarendon Press, Oxford, 1979); M. Zawisky, H. Rauch,

inferred phase shift was fully determined by the measured and Y. Hasegawa, Phys. Rev.59, 5000 (1994).
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