M. Jezek and Z. Hradil

Vol. 21, No. 8/August 2004/J. Opt. Soc. Am. A 1407

Reconstruction of spatial, phase, and coherence
properties of light

Miroslav Jezek and Zdenéek Hradil
Department of Optics, Palacky University, 17. listopadu 50, 77200 Olomouc, Czech Republic

Received October 9, 2003; revised manuscript received February 5, 2004; accepted March 8, 2004

Image reconstruction of partially coherent light is interpreted as quantum-state reconstruction.

An efficient

method based on the maximum-likelihood estimation is proposed for acquiring information from blurred in-

tensity measurements affected by noise.

Connections with incoherent-image restoration are pointed out.

The feasibility of the method is demonstrated numerically. Spatial and correlation details significantly below
the diffraction limit are revealed in the reconstructed pattern. © 2004 Optical Society of America
OCIS codes: 030.1640, 100.3010, 100.5070, 100.6640, 100.6950, 110.4980.

1. INTRODUCTION

Light conveys a considerable amount of information about
the environment. Information coded into and transmit-
ted by light plays a crucial role in contemporary informa-
tion technology. That is why any deeper understanding
of fundamental limitations imposed by the theory repre-
sents a challenging problem. In particular, the resolu-
tion of the optical apparatus and the observation of phase
objects are subjects of long-standing interest in the
image-processing community. Both of these problems
are related to the wave nature of light manifested by its
ability to interfere. The scalar-wave theory represents
an appropriate treatment of interfering optical signals.!
We will restrict ourselves to the important case of quasi-
monochromatic light. The ability to interfere as well as
the spatial and phase properties of such a signal can be
described by the correlation function of the second order,
also called the mutual intensity.>? Being the complex
function of real two-point spatial coordinates, its modulus
completely determines the intensity distribution and the
degree of coherence of the light wave in space. Similarly,
its argument determines the relative optical phase. Mu-
tual intensity is all that we need for a complete descrip-
tion of the partially coherent scalar wave and its evolu-
tion and thus for a determination of the state of light in
the framework of scalar-wave optics.

It is a well-known fact that the smallest distance of an
object’s details that can be resolved by an optical appara-
tus has a physical and not just a technical limit. The dis-
tance, called the diffraction limit, is proportional to the
wavelength and inversely proportional to the angular dis-
tribution of the light observed in the output plane.? Hy-
pothetically, we can restore such a corrupted image if we
apply the inverse action of the optical apparatus. This
direct approach to image restoration represents an intri-
cate problem, the solution of which might be divergent
and might even produce nonphysical results. Various
regularizations and smoothing techniques have been de-
vised to fix the problem.* However, some properties of
the optical apparatus remain unknown in real observa-
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tion. For example, imperfections in the optics and turbu-
lence in the atmosphere both yield uncontrollable image
degradation. All this is vaguely called noise. In addi-
tion to image restoration, resolution can be enhanced by
eliminating out-of-focus light by means of the apodization
technique® or by utilizing the confocal arrangement and
interaction between light and matter, as in multiphoton
fluorescence microscopy and the simulated emission
depletion technique.®’

Another fundamental physical restriction consists in
the inability to observe a phase object without an inter-
ferometric setup. Direct observations are not able to de-
termine the phase of the optical wave owing to its fast os-
cillations and the time integration of the intensity
detectors. The phase must therefore be retrieved by
adopting sophisticated techniques. This well-known
phase problem? can be comprehended as a particular case
of signal reconstruction. Let us define the reconstruction
problem as a procedure for retrieving one physical quan-
tity from the measurement of another one. We will
review the basic methods of phase reconstruction in
Section 4.

Let us assume the more realistic case of the reconstruc-
tion of a physical quantity in a plane different from the
plane of the measurement. The reconstruction of the ob-
ject intensity, optical phase, and coherence properties in
the object (input) plane of the known optical apparatus
from the corrupted intensity measured in the image (out-
put) plane can serve as an example that occurs commonly
in microscopy and astronomy. This task, which we con-
sider in this paper, obviously unifies the problems of res-
toration and reconstruction. It seems to be infeasible to
predict complex physical quantities such as phase and
spatial correlations from the corrupted intensity data
only. However, many different intensity measurements
for various settings of the optical apparatus can be ac-
quired and exploited for reconstruction of the complete
state of the object. In the special case of phase-space to-
mography, the intensity measurements between the focus
(Fourier) plane and the image plane of an ideal lens with
infinite aperture determine the mutual intensity of the
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input optical wave.® The method is sensitive to noise and
can yield nonphysical results owing to the direct inversion
of data.

In this paper the unified problem of restoration and re-
construction of the optical signal will be addressed from
the viewpoint of statistical reconstruction technigues.
The intensity measurements for several settings of a gen-
eral optical apparatus will be used for the reconstruction
of the mutual intensity of the partially coherent light.
For the particular case of totally incoherent light, the pro-
posed approach will be identified with the statistical
Richardson algorithm® of image restoration.

There is a close analogy between scalar-wave optics
and quantum theory. In the important case of a one
pointlike particle propagating in space, the analogy is
obvious.? Quantum theory describes the particle motion
by means of a complex amplitude (de Broglie wave) in-
volving interference effects. The intensity of the complex
amplitude determines the probability of finding a particle.
The same situation occurs in the scalar-wave optics. The
coherent-light signal is described by a complex amplitude,
the intensity of which is accessible by direct measure-
ment. If we interpret this optical intensity as the prob-
ability of finding a photon, we reach the physical equiva-
lence between quantum mechanics (de Broglie theory)
and scalar-wave optics. Moreover, the well-known
Planck relations,’®* E = #w, p = Ak, link the energy and
momentum of the photon with the angular frequency and
wave number, respectively, of the corresponding optical
scalar wave. The equivalence can be extended even to
the case of a partially coherent signal described by the
mutual intensity in scalar-wave optics and by the density
operator in quantum mechanics.® This quantum-like ap-
proach will be briefly reviewed in Section 2. The problem
of quantum-state reconstruction will be considered in
analogy with the optical counterpart of image reconstruc-
tion in Section 5.

For the sake of simplicity, all the problems considered
will be treated as two-dimensional problems. The first
dimension corresponds to the longitudinal z coordinate,
and the second dimension corresponds to the transverse x
coordinate. Further generalization to higher dimensions
can be obtained in a straightforward manner.

2. WAVE THEORY

In this section the analogy between scalar-wave optics
and quantum mechanics will be highlighted. As will be
shown, the abstract quantum formulation is advanta-
geous for the purpose of signal reconstruction.

In the quantum domain, the pure quantum state |y
from Hilbert space!! represents complete knowledge
about the position and momentum of a particle, of course
obeying the Heisenberg uncertainty principle.’® Any
randomness in the ensemble of identically prepared par-
ticles is described by the incoherent mixture of pure
states—a density operator,

p= ; Ael @r){ @l (D
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Probabilities Aj, are nonnegative and add to unity, and the
mixed state [Eq. (1)] satisfies the following relations,

(vloley =0, V], (2

where © means the Hermitian conjugation. Denoting for-
mally the position by a projector |x)(x|, the complex am-
plitude #{(x) = (x| ¢) describes the coherent quasi-
monochromatic scalar field. Indeed, it characterizes the
amplitude as well as the phase of the propagating wave.
In the general case of a partially coherent field, the
second-order correlation function,?

pr=p  Trlpl=1,

T(x, 2') = Te[plx’)x|] = ; Nalx] @e){ @rlx’)

= ; Mpen(2)eF(x") = (P ) (%) )ens

(3)

describes the statistical properties of the field. The
brackets ( )., denote the averaging over complex ampli-
tudes of all modes 2. The analogy between density op-
erator (1) and mutual intensity (3) is expressed clearly by
relations analogous to Eq. (2):

M (x', x) = T'(x, x'), jde(x) =1,

Ix,x)=0. (4

Note that the function I(x} = I'(x, x) means the optical
intensity of the field. The analogy between quantum and
wave descriptions can be emphasized in phase space by
means of the Wigner quasi-distribution,'?!3

1
W(x, p) = ;f dx' exp(—i2px)T(x + x', x — x').
(5)

This (x, p) distribution is a real bounded function, which
is, however, not positively defined in general.

Let us proceed further to consider the state transforma-
tion. Assuming linearity and causality, the equation for
evolution of a pure state formally reads

I ‘!’>nut = T! lﬁ)in . (6)

Here T is linear operator satisfying the equation
d
dz

T=LT, (M

where z is evolution parameter and the generator L of the
evolution is considered to be z independent. Evolution
equation (7) covers both the Schrodinger equation in
quantum mechanics and the paraxial Helmholtz equation
in the Fresnel approximation of scalar-wave optics. The
unitary evolutign is governed by the Hamiltonian opera-
tor L = —(i/A)H, and the evolution of the mixed state is
described by the transformation

A . i,
ﬁnut = TﬁinT+: T = exp( _;«;HZ) : (8)
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Evolution (8) of the state p in the Schrodinger picture
can be equivalently formulated in the Heisenberg picture.
This formulation follows the laws of ray optics. Indeed,
the relationship between the canonical observables of po-
sition and momentum reads

X out _ o+ Xin | 4
(i) =7 e ®

In particular, for the evolution generated by the quadratic
Hamiltonian in canonical observables, transformation (9)
[A B

"‘Ein+ S)
>

is linear,
-"Eout) (fgin

, =T , 10
(pout Din C D|\Pin +r ( }
where Det[T] = AD — BC = 1. This generic ABCD
transformation covers useful cases of wave transforma-
tion, for example free evolution, displacement, rotation,
phase shift, squeezing, and chirp. Linear transformation
of the (%, p) operators induces the evolution of the
Wigner function by linear transformation of its variables,

Wi(x, p) = W(Dx — Bp — s, —Cx + Ap — r). (11)

Roughly speaking, all these transformations rotate and
rescale the input state. As a consequence, the observable
A% + Bp can be measured, offering an important tool for
all the tomographic methods.

In the classical limit there is a close connection be-
tween the evolution of the position and momentum opera-
tors in the Heisenberg picture [Eq. (10)] and geometrical
paraxial optics represented by the identity between op-
erators (%, p) and their ¢ values (x, p). The state vector
(x, p) is used to specify the position and angle of the op-
tical ray. A similar description may be adopted for par-
ticles in classical mechanies. The evolution operator T is
given hy the ABCD matrix T completed by the transverse
shift s and rotation r in analogy with relation (10). Geo-
metrical optics as well as classical mechanics do not in-
volve interference, which simplifies the input-output re-
lations considerably. This is why geometrical optics is so
suitable for “direct” observations. Indeed, if the positions
%1, x5 for two values z, z, are measured, the state vector
(xq, pp) for z = 0 can be completely reconstructed as

x[)) _ 1
Po

(12)

X129 — Xg2
Xp — x|

Z9 — 21

In the case of losses, the evolution turns out to be non-
unitary. Let us imagine the absorbing screen with aper-
ture 2¢. The incident state can be decomposed in the
base of eigenstates |¢) of position x on the screen. Since
only a part of the eigenstate spectrum for eigenvalues
¢ e [—-a, a] is transmitted, the nonunitary transforma-
tion can be described by the projection operator

a
#- [ aelexe ()
-a

corresponding to the finite aperture.

Let us conclude the overview by an explicit formulation
of the state transformation in position representation.
The generic evolution [Eq. (6)] of the pure state (coherent
wave) takes the well-known form of the superposition in-
tegral,

P o £ i A R S
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Your(x) = <x] ‘1[">out = f dx0<x|j1|x0><x0| '-I")in

J dxoh (IC, xO)q}in(xO)- (14)
The kernel of integral transformation (14),

h(x, zg) = (x|T|xe), (15)

is called the propagator in quantum theory and the re-
sponse function or point-spread function in scalar-wave
theory.® Loosely speaking, it relates the point source in
the object (input) plane z = 0 with its image in the image
(output) plane. This mapping is fuzzy in realistic image
processing owing to the effect of diffraction caused by non-
unitary evolution. In the case of an unlimited aperture it
may become sharp, corresponding to the case of unitary
evolution, 7% = 7. Analogously, evolution (8) of the
mixed state (mutual intensity) in the position representa-
tion reads?

Cou(, x') = fj dgdg'h(x, g)h*(x", ¢")Vinlg, ¢')-
(16)

3. DETECTION

According to the standard formulation of quantum me-
chanics, a measurement is represented by an
observable,’® a Hermitian operator A. Eigenvalues of
this operator correspond to possible results of elementary
measurements. FEigenstates determine the possible
states after the measurement, and they are complete and
orthogonal:

{ala"} = 8yqr -
a7

Ala) = ala), 2 la)el = 1,

These properties are reflected in the probability p,
= Tr[pla){a|] predicted by quantum theory guarantee-
ing the normalization of probabilities 2,p, = 1 (com-
pleteness) and mutual exclusivity of the results a (or-
thogonality). ~ This description may be further
generalized in terms of a positive-operator-valued mea-
sure (POVM) yielding the decomposition of the identity
operator,M’

ﬁb = 0, 2 ﬁb = i, (18)
b

which predicts the probability for registering the output b
analogously to the case of orthogonal projectors, p;
= T[pIl,]. The notion of POVM plays a crucial role in
the deseription of a generic quantum measurement in
state estimation and discrimination.

Registration of the image intensity I(x) of a partially
coherent wave in the transverse position x corresponds to
the measurement of the position operator x in the output
plane:

I(x) = rﬂut(xs JC) = P(x) = 'I&{naoutlx>(xi]‘ (19)
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The realistic detector always possesses finite spatial re-
solving power. With its pixels denoted by the indices i,
the simplest representation of detector’s POVM is given
by the operators

0, = j dac|x){x|, (20)
a;

where the integration is done along the surface of the ith
pixel.

Consider now the generic observation scheme. The in-
put state p represented by its mutual intensity I'(x, x')
in the wave-theory framework is transformed by the opti-
cal device 7' = T(A, B,...) with the response function
h(x, x5; A, B,...). The resulting output state p,,; is ob-
served by the intensity detector [Eq. (20)] placed in the
output plane. The detector counts the elementary clicks
in every ith pixel. The number N; of registered clicks de-
termines the relative frequency f; = N;/N, N = I;N; of
the pixel response. These measured data f; sample the
probabilities p; (intensities I;):

pi = Tr{ponO:] = TI'[;BHJ,
Note, however, that this scheme is rather classical and
does not take into account statisties of the detection pro-
cess in accordance with classical opties, in which intensity
is considered a measurable quantity. Provided that the
quantum nature of detection is considered, relation (20)

should be modified by taking into account the registration
of photons instead.

I, = 70, 7. (@

4. DIRECT INVERSION

The restoration and reconstruction of the signal in wave
theory is a rather complex and extensive field with many
applications. Let us briefly review this topic. Assuming
an unknown signal propagating through optical refractive
and diffractive elements, the output field may be de-
tected. Provided that the properties of the optical device
are known and detection is ideal, the input signal may be
predicted from the output one. This is the classical prob-
lem of image restoration.

Standard methods use the isoplanatic approximation
involving relation (14) as convolution:

Yous = j deh(x - x0)¢in(x0) B (22)
Inversion is given by the Fourier deconvolution:

+
g = LN 23)
Here @in, :lf,,ut, and & are Fourier transformations of T/
Wout, and k, respectively, and A/ represents the spectrum
of the additive noise V. The typical point-spread func-
tion & has the form of a sinc or a besinc function, and A
corresponds to a step function. Hence the spatial fre-
quencies of the signal are transmitted only up to a certain
upper cutoff.? This is why the deconvolution is vVery sen-
sitive to the noise NV and diverges at spatial frequencies
for which the transfer function % turns out to be zero. In
particular, for frequencies above the cutoff, the transfer
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function % vanishes and Eq. (23) diverges owing to the
broad noise spectrum A. Some regularization proce-
dures are necessary in all these cases.*'5-22 Special at-
tention has been devoted to a more accurate description of
the optical device. A detailed analysis requires a special
choice of eigenfunctions related to the finite aperture in-
stead of spatial frequencies.?® % A systematic theory of
this remarkable basis, called prolate spheroidal wave
functions, was given by Frieden.?® Several further su-
perresolution techniques such as apodization® and ana-
Iytic continuation?”?® have been suggested.

Another problem arises if we take into account a fur-
ther realistic aspect of detection, namely, the inability of
the intensity detector to observe the phase and coherence
properties of the optical signal. Missing information is
the subject of reconstruction, as we briefly discussed in
Section 1. A large number of phase-retrieval algorithms
have been devised because of the long-standing interest
in the observation of phase objects. Earlier approaches
rely on mathematical properties of the optical signal and
use analytic continuation.>?"?%3® Thege methods enable
us to reconstruct the optical phase as well as the coher-
ence properties. Unfortunately, they are very sensitive
to noise and often produce nonphysical results. The well-
known Gerchberg-Saxton method®' and other methods of
projection onto convex sets3?38 yse the intensity mea-
surement in the focus (Fourier) plane. The Gerchberg-
Saxton algorithm is relatively robust but does not con-
verge in all cases.**® Another feasible method of phase
reconstruction relies on solving the transport-of-intensity
equation.3™*! It is the linear nonseparable partial differ-
ential equation of the second kind, the solving of which is
very inconvenient. Moreover, the phase must satisfy the
boundary  conditions, which are not known
a priori. Further methods use the direct inversion of
various analytical relations between intensity and phase
distributions. The phase reconstruction from the inten-
sity measurements in two planes connected by a small ca-
nonical transformation can serve as an example.*?

Standard image restoration and reconstruction deal
mainly with the observation in the image plane that re-
veals the sharpest image. However, the observations in
defocused planes are also worthwhile.®41434¢ They cor-
respond to the observation of Ax + Bp operators in the
language of quantum theory [Eq. (10)], providing another
piece of information about the signal and affording better
employment of measured data. Such a tomographic
technique was suggested by Bertrand and Bertrand*® and
Vogel and Risken®® in the quantum domain and was veri-
fied experimentally by a group from the University of
Oregon.*” The same group proposed the tomographic re-
construction of the mutual intensity based only on refrac-
tive optics.® The method relies on intensity measure-
ments between the image plane and the focus (Fourier)
plane of an ideal lens with infinite aperture. The simpli-
fied version of this method was confirmed by an experi-
ment with de Broglie waves of helium atoms.*® Several
other tomographic schemes for observing various facets of
the system have been proposed. These have usually been
achieved by adjusting some of the parameters in the
setup. Particular configurations depending on the pa-
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rameter provide the desired group of transformations.
Classical x-ray tomography used in medicine,**-*! various
knife-edge methods,?? and quantum tomography?*®47:53-57
use the group of rotations. Phase-space tomography and
chronocyclic tomography are related to the symplectic
group, but they are convertible to classical
tomography.#*® General nonhomogeneous symplectic to-
mography was introduced by Mancini et al.’® and
Man’ko.>®

All the above-mentioned direct methods of restoration
and reconstruction relate measured data f; to theoretical
probabilities p; by means of the equality

T plL] = £, (24)

where the multi-index { passes over all configurations of
the optical apparatus and over all pixels of the detector.
However, the solution of linear equations (24) represents
an ill-posed problem. The solution is very sensitive to
noise, which is inevitably involved in any measurement
scheme. “Ill-posed problem” implies that the recon-
structed “state” need not represent any physically pos-
sible object. In the language of quantum theory this
means that { ¥|p| #) < 0 may hold for some states | ).
Alternatively, the reconstructed optical intensity I(x)
may drop below zero for some spatial coordinates in the
wave-theory framework. Linear algorithms are not able
to guarantee such necessary conditions as positive defi-
niteness of the density operator or mutual intensity.

Statistical approaches suggest a remedy to this prob-
lem, removing the strict condition of Eq. (24). For ex-
ample, the equality between f; and p; could be replaced by
the requirement of their minimal least-squares differ-
ence,

Z If: -

T 511,112, (25)

an obvious choice in engineering practice. The least-
squares method has been applied to the restoration of op-
tical intensity®>®! as well as to the complete reconstruc-
tion of the quantum state represented by a density
operator.%?2 Nevertheless, other metrics are also possible.
Richardson’s method® based on the Bayesian approach
proves to be a powerful technique for incoherent image re-
construction. The maximum-likelihood principle and the
expectation-maximization algorithm® originated in Fish-
er’s work.%4® They are of fundamental importance in
numerous areas of signal processing, such as emission
tomography,®6-¢®  absorption tomography,*™®  and
incoherent-image restoration.” The minimum Fisher in-
formation and the prior principle of the maximum
Cramer—Rao bound both can be applied to optics and

quantum  theory. "™ The  maximum-entropy
principle”™ 7 represents another useful statistical tool for
intensity  restoration™ ™  and  quantum-state

estimation.?? The feasibility of all the mentioned meth-
ods has been confirmed. However, the optical phase and
coherence properties of the scalar-wave signal are not re-
trieved by any of these methods. Indeed, these methods
restore only the corrupted optical intensity or, alterna-
tively, compose the incoherent image from tomographic
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data. In the following section a unified restoration and
reconstruction method based on maximum likelihood will
be proposed to reconstruct the mutual intensity from sev-
eral intensities corrupted by the general optical appara-
tus and by additional noise.

5. RECONSTRUCTION AS GENERALIZED
QUANTUM MEASUREMENT

Let us assume the generic scheme of quantum measure-
ment [Eqgs. (20) and (21)] described in Section 3. The con-
ditional probability of detecting N;; clicks in the ith pixel if
the state p occurs in the input plane has the form of mul-
tinomial distribution,

H ph, (26)

where the measured data are represented by relative fre-
quencies f; of the registered clicks, Nf; = N;, and p;
mean the probabilities (intensities) predicted by theory
(21). The multi-index i denotes the configuration of the
optical apparatus and the pixel of the detector. The in-
put state p is the subject of the estimation procedure.
The likelihood functional [Eq. (26)] then answers the
question “How is it likely that the given data f; were reg-
istered provided that the system was in the given quan-
tum state p?” The detection of given data is more likely
for some states than for others. Using relation (21), we
obtain the log-likelihood functional:

InL(p) = 2, filnp; = > HInmp]. @D

i 1

The maximum-likelihood principle selects such a state
Pest for which the likelihood reaches its maximum:

Pest = argmaxIn £(p). (28)
P
Being the convex functional of the state p, likelihood (27)
possesses only one maximum or only one plateau of
maxima. The formal necessary condition for this global
maximum, ‘

§In L(p)
— =0, (29)
SP i]est

may be rewritten in the form of the extremal operator
equation,®- 8 or, alternatively, extremization can be done
by means of the numerical uphill simplex method. 8  Any
density operator may be parameterized in the diagonal
form [Eq. (1)] by using independent (orthogonal) basis
states | ¢;), and the variation [Eq. (29)] may be done
along these rays. The likelihood functional depends on
the density operator through probabilities p;. This
yields the system of  coupled equations
[6In £(P /(& ¢p]) = 0 for any allowed component k.

Using the relation

8ln L£(p)
—— E H ) (30)
& @pl :
and the normalization Tr[p] = 1, we obtain the extremal
equation®-85:
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Rp = p. (31)

Here

=3l (32

i D
and the probabilities p; are state dependent [Eq. (21)].
Operator equation (31) determines the most likely solu-
tion g, for which R(p.e) = 1 holds on the Hilbert space
of the state pey .33 No prior knowledge about the esti-
mated state is needed; results of the measurement itself
are sufficient for analysis.

Let us develop the optical counterpart of this recon-
struction problem. In the spatial domain extremal equa-
tion (31) has the form of the integral equation for the mu-
tual intensity I'(x, x’),

fdx’R(q, xHI'(x", q") = T(g, ¢'), (33)

where the resolution of identity 1 = [ dx|x){x| has been
used. The kernel

fi
Rig, ') = 2 o-Pilg =) (34)
and the functions
Pilg, x") = f dxh*(x, q)h(x, x') (35)
a;

correspond to the operator R and to the POVM operators
II;, respectively. Probabilities (21) of the elementary de-
tections in the individual pixels then read

pPi= fqudq'l"(q,q')?’s(q’,q). (36)

Equation (33) relates the measured data f;, properties of
the optical apparatus, and the reconstructed signal
I'(x, x"). Dependence on the optical apparatus is ex-
pressed through the point-spread function A(x, x’) only.
However, this mutual relation is inseparable, since the re-
lation is nonlinear. In contrast to standard treatments in
scalar-wave optics, no assumptions about the statistical
nature of the signal have been made. This seems reason-
able, since the coherence properties of the light field may
change during propagation (the van Cittert-Zernike
effect?). The proposed formulation anticipates only
knowledge of the optical apparatus and the measured
data without any prior assumptions about the unknown
signal.

Special cases of the generic formulation deserve atten-
tion. Let us consider an iterative solution of Eq. (33) tak-
ing the maximally ignorant initial guess represented by
the totally mixed state, 5© = (1/D)1, where 1/D ensures
the trace normalization in D-dimensional Hilbert space.
This corresponds to the totally incoherent optical signal
with uniform intensity. After evaluating the kernel R‘®
we are able to write down the first iteration of the esti-
mated state, 5 = ROp® = 3,£1T,/Te[I,]. In the spa-
tial domain this state has the form of the partially coher-
ent superposition of response functions [Eq. (15)]
weighted by the measured data f;, 2,f; = 1:
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fdxh*(x, DAz, g')

A;

g, q') =2 f; . G6D
[ aspis, o0

Obviously, the coherence properties of the estimated sig-
nal are changed during repeated iterations of extremal
equation (33):

r+ g, q') = fdx'R‘”’(q,x’)F‘”‘(x’, q'). (38

The convexity of the likelihood functional on the convex
set of mutual intensities ensures convergence to the glo-
bal maximum. In addition to the proposed iterative so-
lution, the well-known expectation-maximization
algorithm® completed by the unitary step®* can also be
utilized. This guarantees convergence and keeps all fun-
damental properties [Eq. (4)] of the partially coherent sig-
nal I'(x, x’).

As the second special case, the totally incoherent light
can be assumed,

Fix,x") =I{x)é(x — x"), (39)

where §(x) is the Dirac distribution. The extremal equa-
tion then reduces to

qu’?l(q, g {g') = I(q), (40)
and probabilities (36) read

p;= qupi(q: g)(q). (41)

Relations (40), (34), and (41) provide the extremal equa-
tion for the unknown optical intensity I{x):

fi
> f dg'Pix, g"M(g") = I(x).
| ‘ quﬂ(q,q)ﬂq)

(42)

This equation may be utilized for the iterative procedure
as was proposed by Richardson in 1972 for incoherent-
image restoration. It is worth noting that in the original
derivation® the Bayes rule was adopted. The treatment
devised here makes it possible to extend the Bayesian so-
lution to the case of partially coherent signal reconstruec-
tion.

6. NUMERICAL EXAMPLE

In this section we use a carefully selected example to
demonstrate the feasibility and advantages of the pre-
sented method. A partially coherent testing object is cho-
sen below the resolution limit of a simple optical device
with finite aperture. Therefore, the corrupted output in-
tensities do not bear any resemblance to the true object.
Furthermore, a great deal of background noise is added to
these simulated data. In spite of these obvious limita-
tions the reconstructed object reveals the original struec-
ture. This improvement is achieved by using the output
intensities for several transverse and longitudinal posi-
tions of the object.
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Let us consider an optical setup that consists of free
evolution at a distance d;,, a thin lens with focal length £,
and free evolution at a distance dg,,. The lens has an
aperture diameter 2a. The whole device can be trans-
versely shifted at a distance s from the axial position.
The longitudinal distance d;, from the object and the
transverse shift s are parameters of the optical setup and
may be adjusted during measurement, and the other pa-
rameters are kept constant. The point-spread function
h(x, xo) = hix, x93 dip, 8) = (x|T(d;y, s)|xg) of the de-
vice under consideration reads

dow | [a
hix, xg) = (xlexp( —i2—ktp2) f_ dg&)(¢|

X ex ( i “z)ex ( idin“z
—— =
P of P ka

X exp(—isp)|xg), (43)

where k2 = 2#/\ is the longitudinal wave number. With

the help of the relations 1 = [ dx|x){x|, 1 = [dp|p)(p|,
and (x| p) = (2m) ¥ exp(ixp), the point-spread function
[Eq. (43)] can be rewritten in the form

hix, xq) = ha(x, x0)&(x, xq). (44)

(45)

is the response function of the ideal refractive focusing de-
vice and

1 1-1 é
Ex, xg) = Eert{ 5 \/kA(K +a
=
——a

A

represents the correction to the finite aperture, which
tends to unity for large aperture, lim,_.. &(x, xq) = 1.
The parameter A characterizes the defocusing from the
imaging configuration,

A= 1d;, + Vdy, — 1, (47)

the parameter 6is related to the transverse wave number,

Here

b=
(X, Xg) = expji— +
0 2 duut din

A

(xq + 3)2) 6?

(46)

1 1-1i
_Eeﬂ{ Vi

2

X+ 8 x

—_— + , 48
din dnut ( )

¢ = 6in + 90\1[’. =

and the function erfl ) denotes the common error func-
tion,

2 z
erf(z) = fjo dt exp(—t?). (49)
o

In the present simulation the parameters have been
chosen as A = 600nm, dy, = 1.5m, f= 05m, and a
= 0.6mm. The image (A = 0) appears in the output
plane in the case dy, = 0.75m. However, it is blurred
owing to the small aperture. Strictly speaking, details
closer than the diffraction limit
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Fig. 1. Optical intensity I(g) of the true object in the input
plane.

R = Chdyla (50)

are mapped to two spots with an insufficient contrast ac-
cording to Rayleigh’s criterion. The factor C depends on
the aperture shape and the coherence properties of the
signal. It equals 0.61 in the case of circular shape and
totally incoherent light or 0.82 in the case of totally coher-
ent light (Abbé’s resolution limit). We set C = 0.5, which
is equal to or smaller than any classical resolution limit
for imaging with partially coherent light. The testing ob-
ject in the input plane consists of four bright spots sepa-
rated by dark spaces. The distance 0.15 mm between the
edges of the central closest spots is five times smaller
than the resolution limit [Eq. (50)], R = 0.75mm. The
width of the spots is 0.25 mm. The corresponding optical
intensity I(g) in the input plane is shown in Fig. 1. The
off-diagonal peaks of the mutual intensity I'(g, ¢') of the
testing object, representing the cross correlations be-
tween the spots, are lower than diagonal ones, owing to
the partial coherence.  The contrast V= (I,
= Ipin/Uax + Imin) of the object is V = 1.

The object plane g is discretized by 100 equidistant
points in the interval [—1.5, 1.5] mm or, equivalently,
[-2R, 2R]. The corresponding mutual intensity
I'lg, ¢') is given on a square mesh of 100 X 100 points
(@m, g,) in the process of data generation and subse-
quent reconstruction. It is determined by 1002 — 1 inde-
pendent unknown real numbers, according to properties
(4). Similarly, the detection (output) plane x in the inter-
val [—4, 4] mm is sampled by 64 pixels x; for every longi-
tudinal distance di,; = (0.76 — 0.05/) m, j = 0,...,5, and
for every transverse shift s; = (=1.2 + 0.3])mm, [
= 0,...,8. With relations (35), (36), and (44)-(46), the in-
tensities p;;; = I;;(x;) in the pixels i can be evaluated for
all the configurations (j, {) of the optical setup. For ex-
ample, in the case of the imaging axial configuration (j
= 0,1 = 4), the intensity reveals the central peak with
small sidelobes; see Fig. 2. The corresponding under-
sampled data f; spoiled by 20% background noise are
shown in the same figure. The total number of approxi-
mately 3500 simulated data f;;; serves as an input for the
reconstruction procedure [Egs. (33)-(35)]. Thus the
number of data does not reach the number of the un-
known estimated parameters, but they are of the same or-
der. To solve extremal equation (33) we need to find the
mutual intensity on the given mesh as a Hermitian ma-
trix of the dimension 100 X 100, by means of repeated it-
erations (38). As an initial iteration I'%, the uniform in-
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coherent superposition of all pure states on the
considered space is used; it exhibits a flat intensity pro-
file. Itis important to note that the final result seems to
be independent of the choice of the initial mutual inten-
sity. With the help of T'‘® and Egs. (36), (35), and (34),
we obtain the kernel ®'?. Subsequently, relation (38) for
n = 0 yields the first iteration T'" of mutual intensity
(37), and so on. In the course of the repeated iterations
of the discretized equation (38) the difference e
= 2T g, , q.) — T"q,,, q¢.)|* between two
successive iterations can be used as the criterion for ter-
minating the extremization process. Numerical results
show that the square difference e reaches a level of ~107%
after several tens of iterations and reaches a level of
~107'% after approximately 1000 iterations; see Fig. 3.
The limit € — 0 is equivalent to the convergence of I'™ to
the optimal solution owing to the convexity of likelihood
functional (27). The iterated intensity starts to reveal
the four-peak structure after a relatively small number of
steps. The contrast )V of the central part of the estimated
optical intensity beyond the diffraction limit R reaches a
value of 0.56 after 1000 iterations; see Fig. 4. The posi-
tions and relative intensities of the bright spots and their
correlations in the estimated object match the structure
of the true object very well, as demonstrated in Fig. 5.
The relative optical phase between the closest central
peaks of the mutual intensity is b
= arg[(—0.2mm, 0.2 mm) = 0 rad for the original ob-
ject and —0.022 rad for the reconstructed one. This cor-
responds to a relative-phase error <0.5%.

I(z)

z [mm]
Fig. 2. Simulated data f; in 64 pixels (points) affected by 20%

background noise sample the optical intensity I(x) in the output
plane (curve) for imaging axial arrangement, d;, = 0.75m, s

0 200 400 600 800

iteration

Fig. 3. Exponentially fast convergence of the square difference e
between two successive iterations during the extremization pro-
Cess.
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I(q)

1
—2R -R 0 R 2R

Fig. 4. Optical intensity I(g) of the reconstructed object in the
input plane (points) compared with the true object (thin lines).

|O { T )ZR

1 [ , 1
-2R -R 0 R IR

q
Fig. 5. Contour lines (thin lines) of the reconstructed mutual in-

—2R

tensity I'(g, ¢’). The positions of the diagonal-intensity spots
as well as the positions of the off-diagonal correlations match the
true ones (thick lines).

The numerical simulations clearly show that the pro-
posed reconstruction algorithm is feasible and can be
implemented. It provides considerable improvement
over nonstatistical image-processing techniques, and, sig-
nificantly, it yields complete information in the form of
the correlation function. Similarly, in the quantum do-
main the particular realizations of the. presented algo-
rithm have been applied successfully to the reconstruc-
tion of the spin state®® and to homodyne
tomography.88°

7. CONCLUSION

The purpose of this paper is twofold. First the close con-
nection between wave optics and quantum mechanics has
been emphasized. The operator language routinely used
in quantum theory can simplify the manipulation and de-
scription of optical objects, such as partially coherent
waves and response functions of optical devices. The sec-
ond goal is the mathematical formulation of the recon-
struction algorithm for partially coherent signals proceed-
ing from the maximum-likelihood estimation of mixed
quantum states.?'"  The solution of the extremal equa-
tion by means of repeated iterations has been suggested.
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The first iteration has been explicitly formulated. The
proposed method never yields nonphysical results.

The feasibility of the method has been verified by ex-
tensive numerical simulations. Realistic experimental
data will be considered in a forthcoming publication.
The particular numerical example shows good agreement
between the true and the estimated states of partially co-
herent light beyond the diffraction limit, despite under-
sampled data and 20% background noise.

The method is able to estimate a generic signal without
any prior assumptions, utilizing real noisy data only.
The potential applications cover a wide range of restora-
tion and reconstruction problems. The method can be
used for the state estimation of the localized mode in pho-
tonic bandgap structures (photonic crystals), for the de-
termination of correlations of the signal transmitted
through random media and for the reconstruction of spa-
tial and coherence properties of light confined and emit-
ted by modern laser-diode sources. Moreover, the gen-
eral quantum origin of the method allows us to estimate
an arbitrary, continuous (discretized), partially coherent
physical object described by the correlation function or
the Wigner function. The reconstruction of the de Bro-
glie wave of a particle and the optical homodyne detection
of a quantum state of the light mode are typical examples.
In short, the method is applicable to all inverse problems
in which precise knowledge of the partially coherent sig-
nal (mixed state) is essential, provided that the measure-
ment device and real data are known.
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