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Abstract
Real sources of entangled photon pairs (such as parametric down
conversion) are not perfect. They produce quantum states that contain more
than only one photon pair with some probability. Several aspects of the use
of such states for the purpose of quantum key distribution are discussed. It is
shown that the presence of ‘multi-pair’ signals (together with low detection
efficiencies) causes errors in transmission even in the absence of an
eavesdropper. Moreover, it is shown that even the eavesdropping, that draws
information only from these ‘multi-pair’ signals, increases the error rate.
This fact represents the important advantage of entanglement-based
quantum key distribution. Information, that can be obtained by an
eavesdropper from the ‘multi-pair’ signals, is also calculated.
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1. Introduction

The only provably secure method of communication with
guaranteed privacy is Vernam cipher (or one-time pad) [1].
It requires both communicating parties to share a secret key
of the same length as the message. The problem was how to
distribute this key securely. The solution has been found on the
ground of quantum physics. Quantum key distribution (QKD)
is a technique to provide two parties with such a secure, secret
and shared key. The first protocol for QKD was given by
Bennett and Brassard [2] (BB84) following Wiesner’s ideas
[3]. The essence of this protocol is that if non-orthogonal
quantum states are used for communication and a channel
transmits them perfectly then eavesdropping is detectable.
Later a different protocol, inspired by Bell’s inequalities, was
proposed by Ekert [4]. It relies on nonclassical correlations
or entanglement of two quantum particles. Its simplified
(‘BB84-like’) version works as follows [5]: let us suppose
two communicating parties, Alice and Bob, share a set of
entangled pairs (|V 〉A|V 〉B + |H 〉A|H 〉B)/

√
2, where |V 〉 and

|H 〉 are two orthonormal states of each particle—e.g., vertical
and horizontal linear polarizations of photons. Alice and Bob

choose randomly and independently between two conjugated
polarization bases—e.g., between basis {V,H } (+) and the
‘diagonal’ basis (×) which are mutually rotated by 45◦.
Following a public discussion about the choice of the basis
of measurement apparatuses, Alice and Bob can obtain a
shared key made up from those signals where the measurement
devices give correlated results. This is the so-called sifted key.

For ideal systems proofs of security against collective and
joint attacks were given [6–9]. Finally, proofs of security
of BB84, even in the presence of noise, have been obtained
[10–13]. For practical protocols security analysis is in its initial
stage [14–19].

Photon pairs with correlated polarizations can be prepared,
e.g., by parametric down conversion of type II [20] or
using two down-conversion crystals with phase matching of
type I [21]. Unfortunately, these techniques never produce
exactly a single pair of photons. Quantum states generated
by the above-mentioned down-conversion methods should
be the same in principle. However, the system with two
nonlinear crystals is perhaps more illustrative for our purposes.
Orientations of optical axes of two identical crystals are
mutually perpendicular. With a vertically (horizontally)
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polarized pump beam down conversion will only occur in
the first (second) crystal, respectively. A 45◦-polarized pump
photon will be equally likely to down convert in either crystal.
Let us suppose two spatial modes with two fixed frequencies
fulfilling phase-matching conditions. One is aimed at Alice,
the other at Bob. The first crystal generates beams with
horizontal polarizations, the second one beams with vertical
polarizations. The quantum state generated by one crystal can
be described [22] as1

|ψ〉 = ξ

∞∑
n=0

gn|n〉A|n〉B, (1)

where |n〉 are corresponding number states, ξ =
(cosh χt)−1 =

√
1 − g2 and g = tanh χt with χ being

proportional to the nonlinear susceptibility and pump power
and t denoting the interaction time2. The total quantum state
originating from both the crystals is then3

|�〉 = |ψ〉1|ψ〉2

= ξ 2
∞∑
m=0

∞∑
n=0

gm+n|m〉AV |m〉BV |n〉AH |n〉BH , (2)

where the subscripts V and H denote modes with vertical
polarization (produced by the first crystal) and horizontal
polarization (coming from the second crystal), respectively.
The mean number of pairs is

µ = ξ 4
∑
m,n

(m + n)g2(m+n) = 2g2

1 − g2
. (3)

The presence of more than one pair in the signals (or
more than one photon in the case of ‘single-photon’ protocols)
may enable eavesdropper (Eve) to obtain information about
the cryptographic key without causing any error. Thus she
could learn something about the key and simultaneously stay
undisclosed. Similar difficulties implied by the use of weak
coherent states in combination with lossy lines were pointed
out earlier [14–19]. A comprehensive analysis of the security
aspects of practical quantum cryptosystems taking into account
the source imperfections was performed in [18]. However,
the role of down-conversion sources was reduced just to the
preparation of approximate single-photon states there. In this
paper we want to go beyond this limitation by considering the
entanglement-based QKD.

This paper is organized as follows. In section 2 we
explain, on a simplified signal state containing at most two pairs
of photons, why errors appear in QKD. Imperfect detection
efficiency and losses on the transmission line are taken into
account while detector dark counts are neglected. Section 3
contains the comparison of the amount of information that
can be obtained by Eve from multi-pair or multi-particle
signals (by means of photon-number-splitting attack [18]) for
different cryptographic schemes. Particularly for quantum
cryptography using entangled photons, weak coherent states,

1 Of course, this is just an approximation because more than only two modes
are always present in real cases. If the number of signal or idler modes is
effectively infinite then the total number of photons in signal or idler beam,
respectively, obeys Poissonian statistics.
2 It has a good physical meaning only for a pulse-pumped down conversion.
Then it may be limited to infinity.
3 We neglect a slight decrease of the pump power behind the first crystal.

Figure 1. Arrangement for QKD. State preparer, situated at Alice’s
side, generates signal states (2). Both Alice and Bob have detectors
that cannot distinguish the number of impinging photons and whose
detection efficiencies are ηA and ηB , respectively (this is indicated
by circles in the figure). Alice and Bob change between two
orientations of their polarization analysers: + and ×. Both
communicating parties are connected by a quantum channel with
transmittance ηL. This channel is accessible to Eve.

and down-conversion ‘single-photon’ sources. In section 4
we briefly discuss restrictions on Eve’s activity stemming
from monitoring both the data rate and the ‘double-click’ rate
(both detectors corresponding to logical 1 and 0 fire together).
Section 5 concludes the paper with a short summary.

2. Errors in QKD due to imperfect signal states

Consider the configuration for QKD as in figure 1. Let us
suppose that g � 1 so that in equation (2) we can neglect all
terms containing more than two pairs:

|�〉 = ξ 2[|0, 0, 0, 0〉 + g(|0, 0, 1, 1〉 + |1, 1, 0, 0〉)
+ g2(|0, 0, 2, 2〉 + |2, 2, 0, 0〉 + |1, 1, 1, 1〉) + O(g3)]. (4)

Here we have used the notation

|m,m, n, n〉 = |m〉AV |m〉BV |n〉AH |n〉BH
= 1

m!n!
[(a†

AV a†
BV )

m(a†
AHa†

BH )
n]|vac〉 (5)

with a† denoting creation operators in corresponding modes.
In the diagonal basis ×, represented by the following

creation operators:

a†
X = (a†

V + a†
H )/

√
2,

a†
Y = (a†

V − a†
H )/

√
2,

(6)

state (4) does not change its form. It can be shown that even the
full state (2) is invariant under such transformations of bases
(the same transformation at both sides).

Losses on the channel and non-perfect efficiency of
Alice’s and Bob’s detectors are modelled by beamsplitters
with intensity transmittances ηL, ηA and ηB , respectively. All
detectors are assumed to be ‘yes/no’ detectors, which either
fire or do not fire—they cannot distinguish the number of
impinging photons. They can be described by the pair of
POVM operators Pno = |0〉〈0| +

∑∞
n=1(1 − η)n|n〉〈n| and

Pyes = ∑∞
n=1[1 − (1 − η)n]|n〉〈n|, where η is a detector

efficiency. We neglect noise.
We intend to show that if the detector efficiencies are lower

than 100% the use of signal states (4) inevitably causes errors
in the sifted key. Therefore we are interested only in those
cases when Alice and Bob have set the same polarization bases.
Of course, Alice and Bob include in the key only those events
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in which exactly one detector fires at each side. The average
relative length of the sifted key (with respect to the number of
all generated entangled states) is then given by the formula4

Rkey = 1
2 〈�(PAVyesPAHno PBVyesP

BH
no + PAVno PAHyes PBVno PBHyes

+ PAVyesP
AH
no PBVno PBHyes + PAVno PAHyes PBVyesP

BH
no )|�〉

≈ ξ 4g2{ηAηBηL + g2[1 − (1 − ηA)
2][1 − (1 − ηBηL)

2]

+ 2g2ηA(1 − ηA)ηBηL(1 − ηBηL)}. (7)

Indices AV denote Alice’s detector monitoring vertical
polarization, BH denote Bob’s detector monitoring horizontal
polarization, etc. The first term on the right-hand side
comes from the entangled state |0, 0, 1, 1〉 + |1, 1, 0, 0〉, i.e. it
represents a contribution from a single pair. The second term
is a correction stemming from the state |0, 0, 2, 2〉+ |2, 2, 0, 0〉
and the third one a correction from the state |1, 1, 1, 1〉.

On the other hand, the relative number of errors (i.e. events
when Alice gets a bit different from that detected by Bob) is

Rerr = 1
2 〈�(PAVyesPAHno PBVno PBHyes + PAVno PAHyes PBVyesP

BH
no )|�〉

≈ ξ 4g4ηA(1 − ηA)ηBηL(1 − ηBηL). (8)

Thus the error rate reads

ε = Rerr

Rkey
≈ g2(1 − ηA − ηBηL + ηAηBηL)

1 + g2(6 − 4ηA − 4ηBηL + 3ηAηBηL)

= (1 − ηA)(1 − ηBηL)

2
µ + O(µ2). (9)

Clearly, if ηA → 1 then ε → 0 for all mean pair numbers µ.
So Alice should have as good detectors as possible. At Bob’s
side the crucial limitation is usually represented by a low
line transmission ηL for real systems. If ηL � ηA, ηB then
ε ≈ (1 − ηA)µ/2.

3. Information leaked to Eve

Let us assume now that Eve will try to get some information
on the key only from ‘multi-particle’ (or ‘multi-pair’) signals
in order to avoid errors in transmission. She will be allowed
to use the most efficient individual attack of this kind—the
photon-number-splitting (PNS) attack [18]: she substitutes a
lossy channel by a lossless one. Then she measures the total
number of photons in incoming signals. If this number is
higher than one she extracts and stores one photon (or more).
The rest is sent to Bob. It is also supposed that she can control
Bob’s detection efficiency, so that Bob always receives these
signals. If the number of incoming photons is equal to one
she either blocks the signal or passes it without other changes
to Bob (in order not to decrease the data rate). After the
public comparison of Alice’s and Bob’s bases she makes a
polarization measurement on the stored photons.

The average Eve’s information about sifted-key bits is

IE =
∑
i

ri[1 + pi log2 pi + (1 − pi) log2(1 − pi)], (10)

where ri is the portion of bits that Eve knows with probability
pi ;

∑
i ri = 1. If Eve knows r percent bits for certain, and she

has no idea about the others then simply IE = r .

4 It is taken into account that only about one half of all transmitted signals are
included into the sifted key because only one half of Alice’s and Bob’s bases
coincide on average.

3.1. Weak coherent states

First let us look at the case of quantum cryptography with
weak coherent states (WCS). The signals are represented by
the states (of corresponding polarization modes)

|α〉 = exp(−|α|2/2)
∞∑
n=0

αn√
n!

|n〉,

where |n〉 are Fock states. A mean photon number in a signal
state is µ′ = |α|2.

The expected average relative length of the sifted key (in
proportion to the number of all sent signals) is [16, 18]

Rexp = 1
2 [1 − exp(−ηLηBµ′)],

where ηB denotes Bob’s detector efficiency. The average
relative number of ‘multi-photon’ signals is given by the
formula

Rmulti = 1
2

∞∑
n=2

|〈α|n〉|2 = 1
2 [1 − (1 + µ′) exp(−µ′)].

Eve can determine all the bits stemming from these ‘multi-
photon’ signals with certainty. Thus the information leaked to
Eve reads

I
(WCP)
E =




1 if Rexp � Rmulti ,

Rmulti

Rexp
≈ 1

2ηLηB
µ′, otherwise.

(11)
If the number of ‘multi-photon’ signals is lower than the
expected number of sifted-key bits Eve must pass some ‘single-
photon’ signals in order to reproduce the data rate. So, Eve
knows the part of the key bits with certainty but she knows
nothing about the rest (corresponding to the passed ‘single-
photon’ signals).

3.2. Parametric down conversion

Now, what information may leak to Eve if a parametric down-
conversion (PDC) source of ‘single’ photons is used instead
of laser-producing coherent states? Generated signal states
(with fixed polarizations) are used for BB84 QKD protocol in
exactly the same manner as WCS [18]. The source consists
of a single down-conversion crystal generating state (1) and
a ‘yes/no’ detector (with an efficiency ηA) placed in one of
the two output modes. A click on this detector means that
the signal state has been prepared in the other mode. The
expected average relative length of the sifted key (in proportion
to the number of all generated entangled states) is given by the
formula

Rexp = ξ 2

2

∞∑
n=0

g2n[1 − (1 − ηA)
n][1 − (1 − ηLηB)

n].

The average relative number of ‘multi-photon’ signals reads

Rmulti = ξ 2

2

∞∑
n=2

g2n[1 − (1 − ηA)
n].
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Again, Eve can learn all the bits carried by the ‘multi-photon’
signals with certainty. After some straightforward calculations
one can find the amount of information leaked to her5:

I
(PDC)
E =




1 if Rexp � Rmulti ,

Rmulti

Rexp
≈ 2 − ηA

ηLηB
µ′, otherwise,

(12)
where we have used the fact that in the case under consideration
the mean number of pairs in each generated entangled state is
µ′ = g2/(1 − g2).

3.3. Entangled photons

Finally let us look at the cryptographic scheme fully based on
the entanglement of photon polarizations (EPP); see figure 1.
Signal states are described by equation (2). All detectors are
of ‘yes/no’ type again; on Alice’s side they have efficiencies
ηA, on Bob’s side ηB .

Here the situation is more complex. It becomes important
how many photons Eve separates. However, we will confine
ourselves only to the simplified situation when at most
two pairs are present with a reasonable probability (see
equation (4)). Then Eve can separate no more than one photon
and send the remaining one to Bob. In contrast to two previous
cases, now the information IAE that Eve shares with Alice is
different from the information IEB that she shares with Bob.
This is related to the occurrence of errors in the transmission.

The expected rate of sifted-key generation is given by
equation (7): Rexp = Rkey . A portion of two-photon signals
leaving Alice’s terminal—those signals that can be read by Eve
applying PNS attack—is

Rdouble = ξ 4g4{[1 − (1 − ηA)
2] + ηA(1 − ηA)}.

The first term represents contributions from the states
|0, 0, 2, 2〉 and |2, 2, 0, 0〉, while the second term that from
the state |1, 1, 1, 1〉. (It is taken into account that the bit is
accepted to the key only if there is exactly one click of Alice’s
detector.)

When calculating information it must be taken into
account that Eve does not know all measured bits with certainty.
She cannot distinguish the signals stemming from states
|1, 1, 1, 1〉 from the other two-photon signals. And for these
particular signals she hits Alice’s bit only with probability 50%
and Bob’s bit values are even always opposite to hers. Thus
Eve’s average information is

I
(EPP )
j

≈


f (pj ) if Rexp�Rdouble,
Rdouble

Rexp
f (pj )≈3−2ηA

2ηLηB
f (pj )µ, otherwise,

(13)

where j = AE,EB and f (pj ) = 1 + pj log2 pj + (1 −
pj ) log2(1 − pj ). Probabilities that Eve has the same bit
as Alice or Bob, respectively, correspond to the ratios of
successful results to all results:

pAE = 5 − 3ηA
6 − 4ηA

, pEB = 2 − ηA

3 − 2ηA
.

5 It can be done exactly but for our purposes the used approximation is good
enough.

Clearly, f (pEB) < f (pAE) < 1 for ηA < 1 and then also
IEB < IAE < 1. Unfortunately, the fact that the maximum
Eve’s information (see equation (13)) is lower than unity (if
ηA < 1) does not represent any real advantage because for
Rexp � Rdouble information IAE is equal to information shared
by Alice and Bob, IAB = 1 + ε′ log2 ε

′ + (1 − ε′) log2(1 − ε′),
where ε′ is given by equation (14).

However, notice the very important feature of PNS
eavesdropping in EPP systems which reminds ‘single-particle’
attacks: if Eve applies PNS attack in the way described above,
i.e. if she tries to reproduce only the transmission rate (Rexp),
she increases the error rate. The reason is that she increases
the fraction of |1, 1, 1, 1〉 contributions to the key bits: if Eve
substantially decreases original technological losses on the line
but simulates them henceforth by the selective cancellation
of the single-pair signals only she inevitably increases the
fraction of multi-pair signals that will contribute to the key
and therefore she also increases the number of |1, 1, 1, 1〉
contributions that are responsible for errors. The relative
number of erroneous bits stemming from these contributions
is R(E)err = ξ 4g4ηA(1 − ηA)/2. Thus due to eavesdropping the
error rate grows to

ε′ =




R(E)err

Rdouble
≈ 1 − ηA

6 − 4ηA
, if Rexp � Rdouble,

R(E)err

Rexp
≈ 1 − ηA

4ηBηL
µ, otherwise.

(14)

The increase of the error rate can help to detect an eavesdropper
which is impossible in the analogous situation (PNS attack) in
WCS and PDC systems.

4. How to restrict Eve’s activity

In the previous section Eve was restricted by the demand to
reproduce the transmission rate (the average number of sifted-
key bits) only. However, it is not the only quantity which
could be monitored by Bob. In all the mentioned techniques
Bob can also measure the double-click rate in those events
when he used a different basis from Alice. In the case of
EPP Bob can even monitor the double-click rate in situations
with coincident bases (and, of course, he can monitor the error
rate). Clearly Bob’s activities pose other important restrictions
to Eve [19]. Even more possibilities are offered by a passive
arrangement, when Alice and Bob do not change bases actively
(see, e.g., [23,24]). However, the calculations of double-click
rates in the case of eavesdropping needs to include three-pair
contributions at least.

5. Conclusions

The effect of the presence of ‘multi-pair signals’ on the security
of quantum cryptography was discussed. The ‘multi-pair
signals’ inevitably appear in any system with a parametric-
down-conversion source. We have shown that there is an
important difference between the quantum-cryptographic set-
up that uses such a source just as ‘the triggered source
of photons’ and that which employs the entanglement of
generated signal pairs directly for QKD. In the latter case
there is a nonzero error rate even if there is no eavesdropper.
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This is caused by the joint effect of the occurrence of ‘multi-
pair signals’ and of low detection efficiencies. However, the
most important result is that in the latter set-up an individual
eavesdropping on ‘multi-pair signals’ increases the error rate
in the transmission.
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