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Quantum Interface for Nanomechanics and Atomic Ensembles
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We suggest to interface nanomechanical systems via an optical quantum bus to atomic ensembles,
for which means of high precision state preparation, manipulation and measurement are available.
This allows for a Quantum Non-Demolition Bell measurement, projecting the coupled system atomic
ensemble - nanomechanical resonator into an entangled state. The entanglement is observable even
for nanoresonators initially well above their ground states and can be utilized for teleportation of
states from an atomic ensemble to the mechanical system. Because of the rich toolbox readily
available for both of these systems, we expect the interface to give rise to a variety of new quantum
protocols.

PACS numbers: 03.67.-a,03.65.Ud

Opto- and electro-nanomechanical systems [1], repre-
senting cold high-Q oscillators coupled to optical cavities
or electrical circuits, are rapidly approaching the regime
where quantum aspects are important [2, 3, 4, 5]. It
remains one of the key challenges of nanomechanics to
develop both the tools for a preparation and manipula-
tion of quantum states as superposition and entangled
states, and implement quantum measurements. Moti-
vated by the remarkable achievements with atomic en-
sembles [6, 7, 8, 9], which allow for high-fidelity prepa-
ration and readout, and laser manipulation of atomic
states as long-lived quantum memory, we propose be-
low a quantum interface between atomic ensembles and
opto-mechanical systems, where light plays the role of a
quantum bus.

The coupling of an atomic ensembles to light can in
many cases be described in terms of two bosonic modes.
Field operators [ac, a

†
c] = 1 correspond to a cavity mode

or a propagating pulse. For an ensemble of two level
atoms the mode operators [aa, a

†
a] = 1 describe collec-

tive excitations on top of a fully polarized initial state.
In this system it is possible to engineer a number of im-
portant interactions, e.g. the beam splitter Hamiltonian
HBS ∝ a†

aac + aaa
†
c, used for coherent storage and re-

trieval of light [6], and the down-conversion Hamiltonian
HDC ∝ aaac + a†

aa
†
c, used in combination with single

photon detections for probabilistic generation of light-
ensemble and ensemble-ensemble entanglement [7]. Of
particular relevance for the following is

Hac = Ωa†
aaa + λ(aa − a†

a)(ac − a†
c), (1)

where the first term takes into account a possible en-
ergy splitting Ω of the two atomic levels, which can
be positive or negative. For degenerate levels, Hac re-
duces to the quantum non-demolition (QND) interaction
HQND = HBS − HDC, used for QND measurements of
atomic spins [8]. The full Hamiltonian Hac, in combina-

tion with homodyne detection of light and feedback on
atoms, was used for creation of entanglement of two en-
sembles coupled to a common mode of light, for demon-
stration of quantum memory and teleportation of states
of light to an atomic ensemble [9].

On the other hand, in a system of a nanomechanical
oscillator coupled to a coherently driven optical cavity an
effective Hamiltonian

Hmc = ωma†
mam − δa†

cac + g(am + a†
m)(ac + a†

c), (2)

can be realized, where operators [am, a†
m] = 1 describe

the mechanical oscillator, ωm is its frequency and δ is the
laser detuning from the cavity resonance. For δ = −ωm

an interaction of the type HBS can be tuned to resonance
and lies at the heart of laser cooling of mechanical oscil-
lators [2, 3], while for δ = ωm a Hamiltonian of the type
HDC becomes effective and gives rise to entangling in-
teractions studied in [10]. For resonant drive δ = 0, we
arrive at a Hamiltonian, which is formally equivalent to
Hac, and was used for feedback cooling of the mechanical
resonator [11].

Given the striking parallels between the two systems
and the rich toolbox of interactions and measurements,
interfacing them seems to be a promising endeavor. We
show here that interactions (1) and (2) can indeed be
favorably combined and develop a quantum protocol for
the implementation of Bell-, and QND measurements,
and thus for the generation of entangled states and tele-
portation in the coupled nano-oscillators - atomic system.
We take advantage here of the fact that an inverted har-
monic oscillator can be realized in (1) (for Ω < 0), some-
thing wich is obviously not possible in (2). Remarkably,
the present protocol does not require ground state cool-
ing of the nanomechanical resonator and avoids holding
atoms close to surfaces or inside cavities. This has to be
seen in contrast to other theoretical studies on coupling
of atomic ensembles to nanoresonators [12, 13]. Treut-
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lein et al. [12] suggest to use direct, Zeeman coupling of
an ensemble to a nanoresonator carrying a magnetic tip
for observing cantilever induced spin flips, and Genes et
al. [13] perform steady state entanglement studies of a
coupled atomic ensemble - cavity mode - nanoresonator
system.

We start with derivation of the opto-mechanical (2)
and the light-ensemble interaction (1). Based on this, we
show how they can be combined, as shown in Fig.1a, to
realize a QND-Bell measurement. As an application we
briefly discuss a protocol for teleportation of quantum
states, e.g. the ground state, of an atomic ensemble onto
the mechanical resonator. We conclude with experimen-
tal case studies for two possible setups.

In the opto-mechanical system the fundamental inter-
action is due to radiation pressure [14] or dispersive forces
[5]. In either case the interaction is V = g0a

†
cacXm,

where g0 = (x0/L)ωc and x0 is the mechanical oscilla-
tor ground state spread, L the cavity length and ωc its
frequency. If the cavity is driven by a resonant pulse of
duration τ ≫ 1/γc, where γc is the cavity decay rate, and
power P = Nph~ωc/τ containing a total number Nph of

photons, a steady state amplitude α =
√

Nph/τγc builds
up and the dynamics can be linearized giving an effective
interaction Veff = gxcXm as in (2), where xc, pc describe
fluctuations of the cavity field, see [10]. From Hamilto-
nian (2) the evolution is given by

ẋc = −γcxc−
√

2γc xin, ṗc = −γcpc−
√

2γc pin − gXm,

where [xin(t), pin(t′)] = iδ(t − t′) denotes vacuum noise.
Assuming γc ≫ g, ωm we adiabatically eliminate the cav-
ity mode and arrive at the cavity input-output relations
[15]

xout = −xin, pout = −pin − g
√

2/γcXm. (3)

The output field will contain Stokes- and Antistokes-
sidebands at ±ωm, which are correlated to the mechan-
ical resonator. It is interesting to note that the number
of sideband-photons generated in a time τ is roughly on
the order of ∼ g2τ/γc = (g0/γc)

2Nph ≃ 1 for realistic
parameters as given below.

As indicated in Fig.1a the beam leaving the cavity in-
teracts with an ensemble of Nat atoms, with a relevant
level scheme shown in Fig.1b. This configuration gives
rise to Faraday interaction [16], which is described by a
Hamiltonian H ∝ JzSz for atoms in a cavity supporting
two polarization modes [ai , a

†
j] = δi,j (i, j = x, y). Here

Jz =
∑Nat

i=1 σi
z/2 is the collective ground state spin, with

Pauli matrix σi
z for atom i, and Sz = −i(a†

xay − a†
yax)/2

is a Stokes vector component. Assuming all atoms are
initially polarized along x, i.e. 〈Jx〉 = Nat/2, it is possi-
ble to introduce scaled variables Xa = Jy/

√

〈Jx〉, Pa =

Jz/
√

〈Jx〉 fulfilling approximately canonical commuta-
tion relations, [Xa, Pa] = iJx/〈Jx〉 ≃ i. Correspond-
ingly, the free Hamiltonian describing Zeeman splitting

FIG. 1: (a) Schematic of setup: Light interacts first with a
mechanical oscillator and then with an atomic ensemble, in a
magnetic field B, before it is subject to homodyne detection.
A filter (box) phase shifts the coherent carrier and rotates its
polarization with respect to the quantum fields in the side-
bands, see text. (b) Atomic level scheme: Atoms are pumped
into state +1/2 of a spin j = 1/2 ground state, Zeeman split
by Ω. Light of frequency ωc, propagating along z and linear
polarized along x (double arrows) drives a j = 1/2 → j′ = 1/2
transition, off resonantly with a detuning ∆ ≫ Ω. Via virtual
transitions y-polarized photons are generated (or absorbed) at
sideband frequencies ωc ± Ω (thin arrows) along with atomic
transitions +1/2 ↔ −1/2.

is H0 = ΩJx = −(Ω/2)(X2
a + P 2

a ), where the minus sign
is due to the fact that atoms are pumped to the energet-
ically higher lying state cf. Fig.1b. For light we assume
a large coherent amplitude for x-polarization, 〈ax〉 = α,
such that Sz ≃ −iα(ay − a†

y)/2 ∝ pc. Overall, we arrive
at the Hamiltonian (1). As before, adiabatic elimination
of the cavity mode will yield input-output relations

x′

out = x′

in + κ
√

2/τPa, p′

out = p′

in.

Detailed descriptions [16] show that these equation still
hold for atomic ensembles interacting with a propagat-
ing pulse in free space. In this case τ is the pulse length
and κ2 = (σΓ/A∆)2NatNph, where Γ is the spontaneous
decay rate, ∆ the detuning, σ the scattering- and A
the beam-cross section). Also here the number of pho-
tons scattered into sideband modes, cf Fig.1b, is approx-
imately ∼ κ2 ≃ 1 for realistic parameters.

We now assume that – in the sense of cascaded quan-
tum systems [15] – the cavity output provides the input
to the light-atoms interaction such that x′

in = −pout and
p′

in = xout. This requires, firstly, that the coherent pulse
at frequency ωc is rotated in polarization by 90◦ relative
to its sideband components at ωc ± ωm and, secondly,
that the polarization components are phase shifted by
π/2 relative to each other. This can be achieved by sepa-
rating the optical carrier and the sidebands with an aux-
iliary optical cavity and then performing the required
rotations and shifts. Note that because the sidebands
will be measured by homodyning with the carrier, the
extinction ratio for the carrier at a percent level is suffi-
cient. Alternatively, birefringency can be introduced in
the nanomechanical cavity by, for example, a controlled
stress of a mirror. As will soon become clear, an im-
portant requirement in the present protocol is to choose
parameters such that

κ
√

2/τ = g
√

2/γc, (4)
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which can be fulfilled experimentally as indicated below.
Under these conditions the overall input-output relations
become

x′

out = pin + κ
√

2/τ(Xm + Pa), p′

out = −xin. (5)

Thus light reads out the combined so-called EPR (for
Einstein-Podolsky-Rosen) variable Xm + Pa [17]. In the
next paragraph we will show that this in fact provides
a QND measurement [18] of a commuting pair of EPR
variables, as in [9] for two atomic ensembles.

To see this, we need to study the evolution of mechan-
ical and collective spin variables. From the discussion
above it follows straight forwardly that the mechanical
oscillator evolves as,

Ẋm =ωmPm, Ṗm =−ωmXm−gxc=−ωmXm+g

√

2

γc
xin,

where in the last equality the cavity mode was again adi-
abatically eliminated. In these equations we neglect the
decay of the oscillator. We assume the whole protocol
happens on a time scale ∼ τ such that τγmn̄th ≪ 1,
where γm is the mechanical damping rate and n̄th =
kBT/~ωm is the mean occupation in thermal equilibrium
at temperature T . If this condition is met decay can be
treated perturbatively, as will be done below. Transverse
atomic spin components evolve as

Ẋa = −ΩPa +
κ√
τ
p′

in = −ΩPa − κ

√

2

τ
xin, Ṗa = ΩXa.

Decoherence due to spontaneous emission can be kept
small for sufficient optical depth [16] and will be included
perturbatively further below. Using again condition (4)
and taking in addition ωm = Ω, we finally arrive at

d
dt

(Xm+Pa)=Ω(Pm+Xa),
d
dt

(Pm+Xa)=−Ω(Xm+Pa).

In this closed set of equations of motion for commuting
EPR observables Pm + Xa and Xm + Pa back action ef-
fects of light are canceled out. This establishes the QND
character of the present interactions.

The QND signal lies essentially in the Fourier
components at frequency Ω of the in-phase
component x′

out. For the normalized observ-
ables xcos

out =
√

2/τ
∫ τ

0
dt cos(Ωt)x′

out(t) and

xsin
out =

√

2/τ
∫ τ

0 dt sin(Ωt)x′

out(t) one readily finds
the input-output relations,

xcos
out =xcos

in +κ(Pm+Xa)in, xsin
out =xsin

in +κ(Xm+Pa)in, (6)

with appropriate definitions for the in-components
xin

cos(sin). We assume here Ωτ ≫ 1 such that cosine and
sine components can be taken as independent variables.

This QND measurement leaves the mechanical res-
onator and the collective spin in a state, where the EPR
operators Pm + Xa and Xm + Pa have a reduced uncer-
tainty as compared to their initial variance, conditioned

on the respective measurement results ξcos(sin) of xin
cos(sin).

An unconditionally reduced variance can be achieved by
a feedback operation on the atomic spin, e.g. via fast rf
pulses causing appropriate tilt of the spin, generating a
displacement Xa → Xa − gξcos, Pa → Pa − gξsin with a
suitable gain g. In the ensemble average this generates
a state, whose statistics is described by the input-output
relations [19]

(Pm + Xa)out = (Pm+ Xa)in − gxcos
out (7)

= (1 − gκ)(Pm+ Xa)in − gxcos
in ,

(Xm + Pa)out = (1 − gκ)(Xm+ Pa)in − gxsin
in .

Our aim is to minimize this variance with respect to the
feedback gain g. As initial state of the systems, we as-
sume vacuum for light modes, the ground (fully polar-
ized) state for the collective spin and an initial thermal
occupation n̄i for the mechanical resonator. In thermal
equilibrium n̄i = n̄th, but in principle n̄i can be reduced
by initial laser cooling [2, 3]. The minimal variance

∆(Pm + Xa)
2
out + ∆(Xm + Pa)

2
out =

2
1

(1+n̄i)
+ 2κ2

(8)

is the main result of this paper.
Its importance is due to the fact that the inequality

∆(Pm + Xa)
2
out + ∆(Xm + Pa)

2
out < 2 constitutes a suf-

ficient – and for the present case of Gaussian states also
necessary – condition for entanglement between the me-
chanical resonator and the atomic ensemble [20]. Re-
markably, there is no fundamental limit on observable

entanglement due to initial thermal occupation n̄i, as
2[(1 + n̄i)

−1 + 2κ2]−1 ≤ κ−2. Thus, even for moder-
ate values of κ & 0.5, achievable as outlined below, the
present protocol provides an entangled state independent
of the initial thermal occupation of the nanomechanical
resonator. Some intuition for this effect can be gained
from the observation, that a strong QND measurement
κ → ∞ asymptotically realizes a projective measurement
on the system, collapsing it to a pure, maximally entan-
gled EPR state. There are of course other limiting fac-
tors, which we will discuss below. For now, we just want
to point out that thermal excitations merely restrict the
tolerable duration of the protocol and the life time of
entanglement.

The entanglement created here can be used in particu-
lar for a teleportation protocol for quantum states carried
by an atomic ensemble onto the mechanical resonator.
Assume we first prepare an entangled state characterized
by Eq.(8) and a second, additional atomic ensemble in
a coherent state with amplitudes 〈Xa2〉, 〈Pa2〉. A QND
Bell measurement on the two atomic ensembles is per-
formed, as demonstrated in [9]. The result of such a mea-
surement is essentially given by Eqs.(6) with (Pm + Xa)
and (Xm + Pa) replaced by (Pa + Xa2) and (Xa + Pa2)
respectively. An appropriate feedback, via e.g. piezo-
electric or radiation pressure displacement of the mirror,
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will complete the teleportation and generate a state,

Xtelep
m = Xm + g[xcos

in + κ(Pa + Xa2)] = Xm + Pa + Xa2,

P telep
m = Pm + g[xsin

in + κ(Xa + Pa2)] = Pm + Xa + Pa2.

Here κ and g denote strength of QND interaction and
feedback gain in the Bell measurement on the two atomic
ensembles. The second equalities of both lines are valid
in the asymptotic limit κ → ∞, g → 0 while κg = 1,
which essentially requires a large optical depth[16]. Am-
plitudes are thus transmitted correctly, 〈Xm〉 = 〈Xa2〉
etc., and the amount of added noise, ∆(Xm + Pa)

2 etc.,
follows from Eq.(8). For κ ≃ 1 this is approximately one
unit of vacuum noise in each variable, corresponding to a
fidelity of 2/3. As a side mark, we note that this implies
the intriguing possibility to cool a mechanical resonator
by teleporting the ground state onto it. A similar obser-
vation was already made by Mancini et al. [10], albeit in
a different setting.

We turn to the discussion of losses and decoherence.
The dominant impairing effects, are (i) number mismatch
in Eq.(4), (ii) loss of light and detection inefficiency,
spontaneous emission in light-atom interactions and (iii)
thermalization of the mechanical oscillator. Ad (i), it
is straight forward to derive, that a nonzero mismatch
ǫ = (κ/

√
τ − g/

√
γc)/(κ/

√
τ + g/

√
γc) will give rise to ad-

ditional terms in the variance of EPR variables (8) scaling
in leading order as [ǫκ(n̄i + 2)]2 i. For κ & 1 a mismatch
of ǫ ≃ 1/10n̄i is tolerable. Effects due to processes (ii)
and (iii) can be treated perturbatively as linear losses, as
we exemplify for damping of the resonator: In the course
of the interaction the state of the resonator will undergo
damping at a rate γm and provided γmτ ≪ 1 e.g. Eq.(7)
will generalize to

(Pm+Xa)out = (
√

1 − γmτPm+Xa)in+
√

γmτfXm
−gxcos

out,

where fXm
is a Langevin operator for thermal noise,

〈f2
Xm

〉 = (n̄th + 1). The variance will thus receive an
additional term γmτ(n̄th + 1), such that we have to re-
quire τ ≪ 1/γmn̄th = Qm~/kBT for a quality factor
Qm = ωm/γm. In a similar vein one can treat losses
(ii), which have the advantageous property that the cor-
responding noise is, to a good approximation, vacuum
noise. This will reduce, but not remove the entangle-
ment created in this protocol.

The suggested protocol can be realized with current
technology. We consider two possible setups, in which
the nanomechanical resonator is used either as one of the
mirrors of a Fabry-Perot cavity [2] or as a dispersive ele-
ment in a rigid cavity [5]. Assuming that κ ≃ 1 and that
condition (4) can be matched within an error of ǫ = 0.01
we need n̄i . 30. This can be achieved for high ωm at
dilution refrigerator temperatures, cf. Naik et al. [2] or,
in case of lower ωm or higher bath temperatures, by ap-
plying additional modest laser cooling. As an example
for the two cases, we assume a moving micromirror with

ωm/2π = 5 MHz, mass m = 10−12 kg and quality fac-
tor Qm ≥ 3 × 106 operated at T = 1 K (resulting in
n̄i ≈ 4000, which requires laser cooling by a factor of
150), and a small (dispersively coupled) nanomembrane
with ωm/2π = 30 MHz, m = 10−14 kg and Qm ≥ 105

operated at T = 0.04 K (n̄i ≈ 30). Mechanical quality
and temperature limit the interaction time to τ ≪ 20 µs,
which is in principle sufficient for entanglement of room
temperature atoms and certainly enough in the case of
cold atoms. For the laser-cooled micromirror (4) can be
achieved with a finesse F = 4500 and power P = 100 µW.
Adiabatic elimination of the cavity mode finally poses an
upper bound L ≤ 300 µm on the cavity length. For the
nanomembrane a modest finesse F = 1100 is already suf-
ficient at a pump power P = 100 µW and cavity length
L ≤ 250 µm.

In conclusion, given the rich toolbox of well established
interactions and measurement techniques, we expect the
proposed interface to open a new avenue in atomic en-
semble physics and nanomechanics.
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